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1 Executive Summary 

Water quality in New Zealand needs to improve and this will require a reduction in 

contaminant losses from the land.  Microbial water quality impacts are particularly difficult to 

understand as there is a dearth of fundamental data on E. coli losses from many land uses 

and landscapes. Nevertheless, decisions on future land use need to be made now.  The 

NPS-FM 2020 requires Regional Councils to set limits to manage water quality and “must 

not delay making decisions solely because of uncertainty about the quality or quantity of 

the information available”. 

To support these limit setting processes this project has developed an E. coli runoff risk 

matrix based on expert opinion. This expert opinion was supported by a review of the 

literature on known mechanisms of microbial transport and a review of all modelling studies 

published in NZ. We thus use multiple lines of evidence to support the matrix development.   

Development of the risk matrix entailed several steps: 

• Review of models to identify factors responsible for microbial loads and 

concentrations, 

• Selection of the most important factors, 

• Categorisation of each factor into discrete classes, and 

• Developing a multi-dimensional risk table that included all reasonable combinations 

of the factor classes, assigning each combination to a risk ranking that ranged from 1 

to 10, with 10 representing the greatest risk of stream contamination. 

All of the catchment scale modelling studies that included E. coli were identified and 

summarized in an Excel database (Muirhead, 2022). Three classes of models were 

examined: mechanistic models, hybrid mechanistic/statistical load models, and random 

forest statistical models. 

These modelling studies were investigated to identify landscape, hydrology, land use or 

other explanatory variables used to predict E. coli contamination. The development of the 

risk ranking matrix built on earlier development of typologies developed to explain 

landscape-scale variation in nitrogen and phosphorus losses to water. 

The review identified 4 important factors influencing E. coli concentrations in streams: land 

use, soil drainage, soil wetness and elevation. The 4 factors were subdivided into various 

classes. Land use was subdivided into 5 classes: urban, pastoral, horticulture, arable and 

forestry/other. Soil drainage was subdivided into 3 classes: well drained, light soils and 

poorly drained. Wetness was subdivided into 3 classes: dry, irrigated and/or moist and wet. 

Elevation was subdivided into 2 classes: low and high. The resulting risk matrix is a ranking 

from 1 to 10 with 10 representing the highest risk. The risk matrix ranking can be used to 

indicate a direction of travel and does not represent a numerical risk factor. The E. coli risk 

ranking matrix would be best applied at the scale of a freshwater management unit. 

The risk matrix is presented in Table i and a national scale map of this risk matrix and GIS 

layer is available through the Data Supermarket  

https://landuseopportunities.nz/ 
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Table i.  The proposed E. coli runoff risk ranking matrix. 

 Wetness → Dry Irrigated and/or Moist Wet 

 Drainage → Well Light Poor Well Light Poor Well Light Poor 

LU ↓ Elevation ↓          

Urban All 10 10 10 10 10 10 10 10 10 

Pastoral 
Low 5 6 7 6 7 8 7 8 9 

High 4 5 6 5 6 7 6 7 8 

Horticulture All 3 3 3 3 3 3 3 3 3 

Arable All 2 2 2 2 2 2 2 2 2 

Forestry/other* All 1 1 1 1 1 1 1 1 1 

* includes other non-productive landuses 
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2 Introduction 

Water quality in NZ needs to improve and this will require a reduction in contaminant losses 

from land.  There is a need to understand how different land uses interact with the 

landscape and climate to impact on water quality.  Microbial water quality impacts are 

particularly difficult to understand as there is a dearth of fundamental data on E. coli losses 

from many land uses and landscapes.  A further complication of microbial water quality 

impacts is the difference between stormflow and baseflow conditions in rivers.  During 

stormflow there is a large increase in total streamflow and the associated contaminant 

loads transported in the stream network, and the effect is greater for E. coli loads than for 

other contaminants (Davies-Colley et al. 2008; Ballantine & Davies-Colley, 2013).  This 

means there is a much greater load of E. coli transported in the river during stormflow 

events.  The total load of E. coli in a river has an impact on the waterbody (lake, estuary or 

ocean) that the river discharges into as the large pulses of storm water have to be diluted 

and dispersed over time.  However, the river microbial water quality metrics are based on 

concentrations, not loads.  Because a river spends more days per year in a baseflow state 

than stormflow state, E. coli concentrations during baseflow conditions have a large impact 

on the river water quality metrics – particularly the median concentration.  Regardless of 

the relative size of the annual load of E. coli discharged to a river, sources that occur during 

baseflow conditions will have a disproportionately large impact on the microbial river water 

quality metrics.  In a pasture-dominated catchment, these baseflow impacting sources are 

likely to be animal access to streams, farm dairy effluent (FDE) management and irrigation 

systems (Muirhead et al. 2011; Muirhead, 2019).  Previous tool development in NZ has 

focused on managing E. coli impacts during these baseflow conditions (Muirhead 2015; 

Muirhead & Doole 2017). These have been incorporated into the farm support tool 

MitAgator (https://ballance.co.nz/MitAgator). 

It is unknown whether runoff from the land during storm events will have an impact on E. 

coli concentrations under all flow conditions, including baseflow.  As yet we do not yet have 

a good understanding of the extent to which E. coli that enter a stream during storm flows 

impact on the water quality guideline metrics i.e. do all the E. coli that enter a stream in 

runoff flow all the way to the river mouth and therefore only impact on storm flows?  Do 

these stormflow conditions only impact on the 95th percentile values in the monitoring 

datasets?  Or do some of the runoff E. coli get trapped in the stream sediments and 

subsequently bleed out during baseflow conditions, thus contributing to elevated stream 

median concentrations (Wilkinson et al. 2011; Davies-Colley et al. 2008; Drummond et al. 

2022; Pachepsky et al. 2017)?  Our understanding of the dynamics of E. coli 

concentrations in rivers is poor and this severely limits our ability to model and/or predict 

changes in microbial water quality that might occur in response to changes in land use or 

management (Oliver et al. 2016). 

Nevertheless, decisions on future land use need to be made now.  The NPS-FM 2020 

requires Regional Councils to set limits to manage water quality and “must not delay 

making decisions solely because of uncertainty about the quality or quantity of the 

information available”. 

To support these limit setting processes, this project has developed an E. coli runoff risk 

matrix based on expert opinion.  This expert opinion was supported by a review of the 

literature on known mechanisms of microbial transport and a review of all modelling studies 

published in NZ. We thus use multiple lines of evidence to support the matrix.  The aim of 

this work was to develop a simple tool to help a regional council make decisions at a 

freshwater management unit (FMU) scale.  The tool is designed to indicate whether a 

https://ballance.co.nz/MitAgator
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change of land use in an FMU is likely to increase or decrease E. coli concentrations in a 

river. It also provides an indication of where mitigation efforts could be focussed. 

 

3 Method 

3.1 Development of the E. coli runoff risk matrix 

Development of the risk matrix entailed several steps: 

• Review of models to identify factors responsible for microbial loads and 

concentrations, 

• Selection of the most important factors, 

• Categorisation of each factor into discrete classes, and 

• Development of a multi-dimensional risk table that included all reasonable 

combinations of the factor classes, assigning each combination to a range from 1 to 

10, with 10 representing the greatest risk of stream contamination. 

For each factor in the E. coli risk matrix we reviewed the literature and modelling analyses 

to provide evidence for its selection and ranking.  The focus of the risk matrix is on ranking 

risk between the parameters but does not quantify losses or associated stream 

concentrations.  A ranking of 10 does not indicate 10 times the risk compared with a factor 

of 1. That is, if one land use, climate and soil type combination has a higher ranking 

number, then our expert opinion is that the E. coli losses from that combination will be 

higher, with implications for land use choice or prioritisation of mitigation measures. The 

ranking does not represent a numeric load and hence should not be used for modelling E. 

coli loads, concentrations or a weighted average risk in a catchment. 

The factors and classes that are represented in the risk matrix were aligned with an existing 

land use typology framework developed to explain landscape scale variation in nitrogen 

and phosphorus losses to water (Srinivasan et al., 2021).  The typologies of Srinivasan et 

al. (2021) were modified to include additional land uses and some factors were collapsed or 

changed where it made sense for an estimation of E. coli risk. 

3.2 Review of NZ-based E. coli modelling studies 

All of the catchment scale modelling studies that included E. coli were identified and 

summarized in an Excel database (Muirhead, 2022).  These modelling studies were 

investigated to identify landscape, hydrology, land use or other explanatory variables used 

to predict E. coli impacts.  Where a specific model explanatory variable is used in multiple 

modelling approaches, this was taken as an indication of the relative importance of the 

explanatory variable and hence it’s potential importance as a factor in the E. coli risk matrix.  

Also, the importance of a model explanatory variable used in both national and regional 

scale model applications was interpreted as the scale at which that parameter was 

important.  That is, if an explanatory variable was statistically significant at a national scale 

application but not at a regional or catchment scale, then this was interpreted as a potential 

risk factor for a national scale application, but not at a FMU scale.  Three classes of models 

were examined: mechanistic models, hybrid mechanistic/statistical load models, and 

random forest statistical models. In this report we consider all these models as 

complementary lines of evidence. Additional emphasis in this review was placed on the 
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random forest models as the outputs of this relatively new modelling approach have not 

been summarised before.  

3.2.1 Review of the random forest models 

There have been 5 published studies using the random forest (RF) model technique for E. 

coli in NZ - two national scale studies and 3 regional level models for Southland, Taranaki 

and Otago.  Details of this technique can be found in the references but, in brief, the model 

is provided with E. coli data collected at river water quality monitoring stations and a range 

of associated data describing catchment characteristics. The characteristics include land 

use, climate, topography data from the River Environment Classification (REC) and 

Freshwater environments etc.  RF regression models then use a non-linear model 

approach to identify which combination of predictor variables best predicts the pattern of E. 

coli concentrations in the monitoring data.  Because the microbiological water quality 

guidelines include four water quality statistics (NPS-FM 2020), four different RF models 

were developed for each study i.e. one for each E. coli statistic.  Except for the first RF 

modelling study by Whitehead et al. (2018) that only modelled the median E. coli 

concentration.  These results are further complicated by the fact that for each of the 

different RF modelling studies different sets of predictor variables were provided to the 

model.  The output from the model is a prediction of the E. coli statistic for each 

combination of predictor variables.  The model outputs can also include a list of the relative 

importance of each predictor variable used in the RF model prediction.  For the most 

important predictor variables (up to 8), we were also provided with the “marginal response 

curves”, also known as “partial plots”, for these predictor variables.  While these RF 

marginal response curves are not necessarily linear, each of the responses were classified 

into a generally positive or negative response depending on whether the E. coli 

concentrations increased or decreased as the predictor variable increased or decreased. 

To standardise the results from the 5 different RF studies we selected only the top 10 

important predictor variables for each study/E. coli metric combination.  This generated a 

reduced database of the top 10 parameters for 17 individual RF models.  We then 

summarized this data to determine which predictor variables were most consistently 

identified as an important predictor of E. coli concentrations in the RF models. This 

summary is presented in Table 1. 
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Table 1.  Summary of the frequency of occurrence of a predictor variable in the top 10 most 

sensitive inputs in a RF model.  The row labels are the short code used to identify the 

individual input parameters.  A full description of the short codes can be found in the 

individual RF modelling reports; the top 10 are presented in Table 2.  The count is the 

number of times that the predictor variable appeared as one of the top ten most important 

predictors for the individual RF models. 

 

Predictor variables Count 

uselev 17 

usslope 15 

ustwarm 14 

usrnvar 13 

usIntensiveAg 13 

SUDensityTotal2017 12 

ustmin 11 

usPastoralLight 10 

usBare 10 

ushard 9 

usNativeForest 8 

uspsize 6 

PropDairy2017 5 

segElev 5 

usPastoral 4 

usrain 2 

usUrban 2 

PropSheep2017 2 

usIndigForest 2 

usLake 2 

usWetland 1 

usPhos 1 

usExoticForest 1 

usrd20 1 

FRE3.Count.StandardisedByMeanFlow 1 

usParticleSize 1 

USCalcium 1 

lcv.StandardisedByCatchArea 1 

Grand Total 170 
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Table 2. Full description of the top 10 short codes contained in Table 1.  

Short code Full description 

uselev Mean elevation of the upstream catchment 

usslope Mean slope of the upstream catchment 

ustwarm Mean catchment January air temperature 

usrnvar Mean catchment coefficient of variation of annual rainfall 

usIntensiveAg Proportion of catchment occupied by combination of high producing exotic 
grassland, short-rotation cropland, orchard, vineyard and other perennial 
crops (LCDB4 classes 40, 30, 33) 

SUDensityTotal2017 Stocking rate of all animals in a catchment using relative stock units (LCDB4) 

ustmin Mean catchment June air temperature 

usPastoralLight Proportion of catchment in low producing grassland (LCDB4 class 41) 

usBare Proportion of catchment occupied in bare or lightly-vegetated cover (LCDB4 
classes 10, 12, 14, 15, 16) 

ushard Mean catchment induration (hardness) of regolith 

 

4 Results and Discussion 

4.1 Results of the modelling studies 

4.1.1 Landscape features 

From the RF model studies, the dominant landscape features were upstream elevation and 

upstream slope.  Upstream elevation was a top 10 predictor variable in all 17 RF model 

studies and upstream slope was a top 10 parameter in 15 of the 17 studies.  Both of these 

parameters were negatively correlated with E. coli concentrations i.e. E. coli concentrations 

were lower in catchments with higher mean elevations and higher mean slopes.  The 

elevation parameter may be related to land use intensity as in NZ the most intensive 

agricultural land use generally occurs on the flat land at low elevation.  The reference site 

analysis by McDowell et al (2013) also identified a strong correlation between catchment 

elevation and E. coli concentrations at water quality monitoring stations. 

The potential relationship between stream E. coli concentrations and average catchment 

slope is conflicting.  The RF models identified a consistent negative relationship with slope.  

The hybrid mechanistic/statistical model CLUES investigated the influence of slope as a 

potential explanatory variable but found it did not have a statistically significant effect and it 

was thus not used in the models.  Slope is further complicated as it is negatively correlated 

with land use intensity (Srinivasan et al. 2021).  While runoff generation and associated 

transport of E. coli may increase with increased slope, the source of E. coli from animal 

faeces may be decreased and hence cancel out other effects to leave a minimal overall 

effect of slope.  Another complication with slope may be related to connectivity effects 

whereby overland flow is generated on the steeper slopes some distance from the stream, 

but the flow does not reach the stream due to capture in sinks or infiltration on lower slopes 

closer to the stream (Thomas et al. 2016). 

From the RF models, upstream temperature was frequently identified in the top 10 

parameters with usTmin identified in 11 of the 17 models and usTwarm identified in 14 of 

the 17 models.  Temperature was positively associated with E. coli concentrations.  This 

positive relationship was also identified in the reference site study (McDowell et al. 2013).  

The national scale CLUES model identified temperature as a significant parameter (positive 

effect) but temperature was not significant when CLUES was applied at the smaller 

regional or catchment scales.  This could imply that temperature is important when there is 
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a wide range of annual temperatures as seen across the whole country rather than at the 

smaller regional scale of annual temperature differences.  Temperature may be related to 

productivity of the landscape with higher plant growth rates supporting higher plant and 

animal biomass on productive land and in forests. 

The three factors of elevation, slope and temperature are all correlated.  Therefore, the 

single factor of elevation, that had the strongest influence as a predictor variable, could be 

used in the risk matrix with the assumption that this factor will also capture some impact of 

slope and temperature on the E. coli risk. 

A key explanatory variable of E. coli losses in all the process-based models and in the 

hybrid CLUES model is soil drainage class.  The logic behind this is that the soil drainage 

class has a large impact on the amount of surface runoff generated from the landscape, 

and poor drainage is likely to lead to surface or near-surface runoff and artificial drain flows 

that are likely to have high concentrations.  The RF models did not include soil drainage 

class as an input parameter so it is unknown if this parameter would be selected in a RF 

model.     

4.1.2 Hydrology 

The runoff generation calculations in all of the process-based models start with rainfall and 

then use potential evapotranspiration (PET) and a soil water balance to calculate runoff. 

They then typically use a curve number approach to calculate the overland flow proportion 

of the total runoff/drainage.  Therefore, all these parameters appear to be important.  

However, none of these hydrology parameters were consistently identified as important in 

the RF models.  As a potential explanation for these results, the process-based models are 

calculating the load (or mass) of E. coli in the runoff, whereas the RF models are 

attempting to predict the instream E. coli concentrations.  It is possible that runoff volumes 

and loads of E. coli correlate and result in similar in-stream concentrations. It is also 

possible that some of the variables that appear in the RF models, such as elevation and 

rainfall variation, correlate with rainfall.  

Interestingly, the one hydrology parameter that was identified in 13 of the 17 RF models is 

upstream rainfall variation (usrvar).  Upstream rainfall variation is the coefficient of variation 

in the annual rainfall and was negatively correlated with E. coli concentrations i.e. 

increased rainfall variation was associated with a decrease in E. coli concentrations.  This 

effect may be more related to its effect on farm systems than on rainfall-generated runoff.  

In farm systems, consistent rainfall from year to year makes it easier to budget feed for 

animals.  If the rainfall from year to year varies appreciably, it is challenging to feed the 

animals in the drier years and hence these farm systems tend to have lower stocking rates.  

The alternative is (where available) to import expensive extra feed or install irrigation 

systems to maintain higher stocking rates in the dry years.  Therefore, if two landscapes 

had the same long-term annual rainfall amount, a landscape with higher annual rainfall 

variation would typically have a lower stocking intensity. 

4.1.3 Land use 

There are some clear influences of land use that are represented by the models.  The RF 

modelling studies did not use the same land use layers for each of the 5 studies.  For the 

one RF modelling study that used up-stream pastoral land use as a predictor variable, this 

land use was the first or second most important predictor variable for all four E. coli statistic 

(individual RF models).  The other four studies used upstream intensive agricultural land 

use as a predictor variable and this was in the top 10 of all 13 RF models.  Furthermore, 
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three of these RF studies included an additional predictor variable of “stock unit density 

total” and this layer was in the top 10 of all 12 RF models.  These last three RF studies (12 

RF Models) also included input layers for the proportion of sheep or dairy but these factors 

were not consistently in the top 10 most important predictor variables.  From these RF 

modelling studies we can see that intensive pastoral land use is a significant driver of in-

stream E. coli concentrations. It also appears that total stock numbers are driving this 

effect, rather than a single animal species. 

The reference site study by McDowell et al. (2013) also showed a significant positive 

relationship between the proportion of area in pasture in a catchment and the E. coli 

concentrations in the river. 

Of the six CLUES modelling studies (Muirhead, 2022), land use could only be significantly 

separated into urban, pasture and non-pasture areas in five of these studies.  In one study 

of the Waikato/Waipa catchment, the pastoral land use could be significantly sub-divided 

into dairy, intensive sheep and beef (S&B) and hill & high country S&B land uses.  

Interestingly, in this study the highest E. coli losses were from the hill & high country S&B 

land use, followed by dairy and then intensive S&B.  The general results of the land uses 

from the CLUES models are that urban land use has the highest yields of E. coli followed 

by pastoral and then non-pastoral land use.  The E. coli yield differences between pastoral 

and non-pastoral land uses ranged from six times higher in the Northland study to 176 time 

higher in a national scale study. 

None of the process-based models specifically addressed the question of E. coli losses 

from different land uses.  Due to a lack of data on E. coli excretion from sheep at the time, 

the earliest work by Collins and Rutherford (2004) assumed that sheep and cattle faecal 

concentrations were equivalent and, therefore, their model showed no differences in runoff 

from sheep or cattle grazed areas.  The model developed by Wilkinson et al. (2011) used 

very simplified farm inputs and assumed faecal loadings only from cows.  Hong et al. 

(2018) modelled the Toenepi catchment in the Waikato and assumed all land was dairy 

grazing.  Dymond et al. (2016) and Srinivasan et al. (2021) both calculated overland flow 

volumes generated from the landscape and then multiplied this by an E. coli concentration 

to calculate the load of E. coli from the land use.  Due to a lack of data on E. coli 

concentrations in overland flow from a range of land uses, both these models used a single 

concentration value for all pastoral land use and assumed zero E. coli concentration in 

overland flow from non-pastoral land uses. 

4.1.4 Other factors 

The process-based models included other factors that could affect in-stream E. coli 

concentrations, such as direct inputs from animals, farm dairy effluent (FDE) management 

and stream proximity. These individual factors are generally not contained in land 

information as direct stock access to streams and FDE are farm specific management 

actions.  However, these managements are also land use specific.  For example, almost all 

dairy farms have now fully fenced off streams and deferred FDE irrigation to land is the 

preferred management system across NZ.  Therefore, these management actions can be 

assumed for any land use mapped as dairying. 
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4.2 Development of the E. coli runoff risk matrix 

4.2.1 Land use 

The land use factor was divided into five classes for use in the matrix: urban, pastoral, 

horticulture, arable and forestry/other.  The urban land use was ranked as the highest risk. 

The CLUES modelling consistently identifies urban as a large E. coli source and this is 

consistent with data from water quality monitoring stations (MfE, 2017).  This urban ranking 

is applied to all urban land regardless of climate or landscape features as there is no 

published evidence to support varying this risk. 

Forests (native and harvested) and other non-productive land cover categories are given a 

ranking of 1 as the lowest potential E. coli risk to water.  At a national scale we recognise 

that there is a temperature effect in that warmer northern regions of NZ are associated with 

higher E. coli concentrations than in cooler southern climates (RF and CLUES models).  

This temperature effect could be related to higher productivity in warmer climates leading to 

them containing larger populations of animals and birds that are shedding E. coli into the 

environment and impacting microbial water quality (Cookson et al. 2022).  However, for a 

risk matrix to support decision making at the FMU scale we believe that any temperature 

effect would be too small to include as an individual factor.  However, some effect of 

temperature at an FMU scale will be included in the elevation factor, as described below. 

There is no data on E. coli concentrations in runoff from arable or horticulture land.  We 

would expect higher volumes of runoff from these categories than from forested land, but 

lower E. coli concentrations than from pasture due to the minimal number of farm animals 

in these arable and horticultural systems.  The risk rankings are therefore between those 

for forests and pastoral land use categories.  The arable land use is given a lower ranking 

than horticultural land for two reasons.  Firstly, arable land use usually involves frequent 

cultivation which will increase infiltration rates (reducing runoff volumes) and will remove 

any faecal material from the surface and mix this into the soil.  A study in a pastoral area 

showed that cultivating the soils had a significant effect on E. coli concentrations in runoff 

(Muirhead et al. 2006).  Secondly, horticultural land is likely to have a higher bird population 

and is more likely to use organic fertilizers that contain faecal material which will remain on 

the soil surfaces.  Therefore, the arable land is given a risk ranking of 2 and horticultural 

land a risk ranking of 3.  Given the low loading of faecal material in these systems, the risks 

should be relatively low regardless of the climate conditions.  The CLUES models predicted 

large differences in the E. coli losses from non-pastoral versus pastoral land uses. 

Pastoral land use was lumped into a single classification rather than separate classes for 

sheep & beef land or dairying.  This decision is based on multiple lines of evidence.  Firstly, 

the RF and CLUES models intensive land use category was consistently identified as a 

significant driver of E. coli contamination, rather than any animal species difference.  

Secondly, a recent study that compared sheep versus cow grazing, at equivalent stocking 

rates, showed that E. coli runoff from the sheep pasture was four times greater than from 

cow pasture (Muirhead, 2023).  This is due to the extremely high concentrations of E. coli in 

sheep faeces.  Therefore, although S&B farms are often less intensively managed than 

observed for dairy farms, it seems best to give all pastoral land use the same E. coli risk 

ranking until more science is conducted to provide more refined advice. 
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4.2.2 Elevation 

Elevation was a more consistent predictor variable of E. coli losses in the RF models than 

slope, and slope was not significant in the CLUES models.  Elevation is however related to 

farm intensity, with stocking rates reducing as farm elevation increases due to the reducing 

amount of feed that can be grown in elevated regions where temperatures are usually 

cooler.   We have therefore chosen to split the elevation factor into 2 classes of high (>350 

m) and low (<350 m) altitude.  This 350 m elevation threshold was chosen from two lines of 

evidence.  Firstly, based on the marginal response curves from the RF models, the mid-

point of the elevation predictor variable curves was typically in the 300 to 400 m altitude 

range.  Secondly, we conducted a GIS analysis of the proportion of farmed area below “X 

m” elevation using the 2017 AgriBase farm data and NZSoS version 1 DEM (15 m/pixel).  

This spatial analysis identified that 90% of dairy farmed land was < 340m, 90% of arable 

land use was below 312 m, 70% of beef farmed land was below 365 m, 50% of sheep 

farmed land was below 337 m and 50% sheep and beef farmed land was below 376 m.  

We therefore felt that a threshold altitude of 350 m would capture the more intensive land 

used below this altitude.  We acknowledge that other factors of temperature and slope, 

which are not used in this risk matrix, are strongly correlated with elevation. 

4.2.3 Wetness 

Wetness is included in the E. coli risk matrix due to its strong influence on both overland 

flow generation and stock carrying capacity of the land.  Rainfall was a key driver in the 

process-based models and was a significant driver in the CLUES models.  We have 

adopted the rainfall categories as used in Srinivasan et al. (2021) but have combined the 

irrigated and moist categories into one risk level.  This is because irrigated pasture will 

have a similar stocking rate to the moist land and due to irrigation may generate similar 

amounts of overland flow i.e. when rainfall does occur the soil moisture levels in the 

irrigated land will be higher and, therefore, generate more runoff than from the equivalent 

dryland farm.  Wet areas are expected to generate the most overland flow and dry areas 

the least; these thus remain the same classes as documented in Srinivasan et al. (2021).  

These wetness classes as developed by Monaghan et al. (2021) and used in Srinivasan et 

al. (2021) are reproduced in the Appendix. 

4.2.4 Soil Drainage 

Soil drainage features are known to have a large effect on overland flow generation. 

Therefore, we used the same three soil drainage categories as used in Monaghan et al. 

(2022).  The CLUES models all identified soil drainage characteristics as a significant driver 

of E. coli losses and soil drainage parameters are used in all the process-based models.  

Surface runoff is usually the dominant pathway of E. coli losses from land (Monaghan et al. 

2016).  Well drained soils allow for greater infiltration of water and will trap a larger 

proportion of E. coli in the soil pores (Smith et al. 1985, Muirhead et al. 2006; McLeod et al. 

2008), resulting in the lowest risk factor.  Poorly drained soils have high losses of E. coli 

due to high volumes of overland flow (Dymond et al. 2016; Srinivasan et al. 2021).  Farm 

production on poorly drained soils can be increased by installing artificial drainage systems 

but still result in high E. coli losses through the drains (Monaghan et al. 2016).  The light 

soil classification in Monaghan et al. (2022) was given an intermediate risk level due to the 

relatively low plant available water holding capacities of this soil group. This feature results 

in potentially greater volumes of drainage through these soils and an associated elevated 

risk of microbial bypass flow (McLeod et al. 2008; McLeod et al. 2014).   These soil 
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drainage classes as developed by Monaghan et al. (2021) and used in Srinivasan et al. 

(2021) are reproduced in the Appendix. 

4.2.5 Matrix construction and the proposed matrix 

The E. coli runoff risk ranking matrix was based on the 4 most important factors identified in 

the modelling assessments described above, namely: land use, soil drainage, wetness and 

elevation.  These 4 factors were subdivided into classes as shown in Table 3.  The risk 

ranking process was undertaken by starting with forestry/other as a ranking of 1, arable as 

2 and horticultural as 3.  We then determined that the lowest pastoral land use risk should 

be the combination of high elevation, well drained soils and a dry environment; this 

category was given the next ranking of a 4.  Within an elevation class, as the drainage 

class moved from well drained to light to poorly drained soils we increased the risk index by 

1 point per step.  Likewise, within a soil drainage class, as the elevation decreased from 

high to low we increased the risk ranking by 1 point.  Further, as the wetness class 

increased from dry to irrigated/moist to wet, we increased the risk ranking by 1 point per 

step.  This resulted in a pastoral land use risk ranking ranging from 4 for a well-drained soil 

type in a dry environment at high elevation through to a risk ranking of 9 for a poorly 

drained soil type in a wet environment at low elevations. Urban land use was then assigned 

the next highest ranking of 10. 

The underlying assumption in this approach is that the relative impact of the 3 factors of 

elevation, soil drainage and wetness are similar.  As a result of this risk ranking, we have 

created a scenario where pastoral land use on poorly drained soils in a wet environment at 

a high elevation has a similar risk ranking to that of a well-drained soil at a low elevation in 

the same wet environment or a poorly drained soil in a dry environment at low elevation.  

There is no data on E. coli losses to support or disagree with this approach.  However, this 

tool is most likely to be used to evaluate land use change or land retirement away from 

pasture.  In this situation it would seem reasonable that retiring pastoral land on poorly 

drained soils in a wet environment will have a much larger effect on reducing E. coli 

concentrations in a FMU than retiring pasture on a well-drained soil in a dry environment.  

Similarly, retiring land at a high elevation will have less impact on E. coli losses than retiring 

land at a low elevation. 

 

Table 3.  The proposed E. coli runoff risk ranking matrix. 

 Wetness → Dry Irrigated and/or Moist Wet 

 Drainage → Well Light Poor Well Light Poor Well Light Poor 

LU ↓ Elevation ↓          

Urban All 10 10 10 10 10 10 10 10 10 

Pastoral 
Low 5 6 7 6 7 8 7 8 9 

High 4 5 6 5 6 7 6 7 8 

Horticulture All 3 3 3 3 3 3 3 3 3 

Arable All 2 2 2 2 2 2 2 2 2 

Forestry/other* All 1 1 1 1 1 1 1 1 1 

* includes other non-productive landuses 

 

The GIS layer is available through the Data Supermarket at https://landuseopportunities.nz/ 

 

https://landuseopportunities.nz/
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5 Recommendations and further steps 

This E. coli risk ranking is based on expert opinion following multiple lines of evidence and 

as such represents the best available knowledge of impacts on microbial water quality 

statistics at this time, and could be further developed.  This ranking matrix would be best 

suited to use at a FMU scale. 

The validity of this risk matrix could be evaluated using the empirical modelling approach 

currently under development for nitrogen (Snelder et al. 2023).  This approach may enable 

the development of a more quantitative risk matrix.  This current E. coli risk matrix is 

focused on the risk related to in-stream E. coli concentrations.  Further work could 

investigate the development of a risk matrix for catchment loads that are more relevant to 

defining impacts on receiving water bodies.  Furthermore, the “potential pasture growth” 

layers now available in the Data Supermarket could be explored as an additional or 

alternative factor in the E. coli risk matrix.  
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Appendix 

 

The wetness and soil drainage classes developed by Monaghan et al. (2021) and used in 

Srinivasan et al. (2021) are reproduced below: 

 

(2) Wetness was used to categorise variability in contaminant loss due to the influence of 
water availability and transport. Wetness levels were predicated on the known 
influence that surplus rainfall directly exerts on the transport of contaminants 
through (Cichota et al. 2012) or over (McDowell et al. 2005) soil. Four classes of 
wetness were distinguished based on the following criteria: 
(2a) ‘Irrigated’ – farms where >50% of the farm area is irrigated. 
(2b) ‘Wet’ – farms where mean annual rainfall exceeded 1700mm. 
(2c) ‘Moist’ farms were categorised based on the upper 50th percentile for calculations of 
annual surplus rainfall (rainfall minus evapotranspiration), as derived from rainfall 
input settings in the Overseer farm files not assigned to ‘Irrigated’ or ‘Wet’ categories. 
The surplus rainfall threshold between ‘Moist’ and ‘Dry’ classes approximated to an 
annual rainfall total of 1100 mm. 
(2d) ‘Dry’ farms were assigned based on the lower 50th percentile category for calculations 
of annual surplus rainfall... 

 

(3) Soil Drainage was used to capture the effects of two fundamental processes that 
influence the vulnerability of soil to nitrate leaching. The first effect is N displacement 
from soils that have contrasting abilities to store water and nutrients (Wild 
1981; Addiscott 2011; Boy-Roura et al. 2016); Plant Available Water (PAW) 
holding capacity was selected as the soil attribute that best represented this aspect 
of leaching vulnerability (Cichota et al. 2012; Horne and Scotter 2016). The 
second effect considered was soil denitrification where nitrate is reduced and 
removed from anoxic soil via gaseous forms (Addiscott and Powlson 1992; Cameron et al. 
2013). Soil drainage class, as defined in the Land Resource Information 
Systems (LRIS) soil map layers (Newsome et al. 2008), was selected as the 
attribute that best represented these aspects of N leaching vulnerability. This hydrological 
feature has also been used by others to improve models that link landscape 
vulnerability to nitrate contamination of groundwater (e.g. Nolan and Hitt 2006; 
Burow et al. 2010). Three classes of soil drainage were thus determined: 
(3a) ‘Light’ soils, defined as having PAW60cm contents less than 85 mm (and representing 
20% of the soil types documented in Dairybase file information); 
(3b) ‘Well-drained’ soils, classified as ‘well’ or ‘moderately well’ drained in the LRIS 
mapping system; and 
(3c) ‘Poorly-drained’ soils, classified as having ‘imperfect’, ‘poor’ or ‘very poor’ soil drainage 
classes (Newsome et al. 2008). 

 

 


