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Glossary 

Term Definition 

Attenuation coefficient The proportion of the export load that is lost between 

the sources and the instream observation point. 

Concentration Concentration of E. coli in water measured as colony 

forming units (cfu) or most probable number (MPN) per 

100 ml. The different units reflect different test 

methods, but they both represent the number of viable 

bacteria in a 100 millilitre sample of water. In this study, 

concentration is reported as cfu 100 ml-1. 

DN2.4 Digital river network, version 2.4 

Empirical catchment water quality 

model 

Shortened to ‘empirical model’ in the report. These 

models use a purely empirical (statistical) approach to 

predict instream load or concentration at a point in the 

drainage network based on the proportion of upstream 

catchment occupied by various Types defined by a 

typology. There is no attempt to represent either 

contaminant loss from land or attenuation so the 

predictions are purely data driven. 

ETC Empirical Type Concentration. The expected instream 

concentration (cfu 100 ml-1), realised at a point in the 

drainage network (post attenuation), that is generated 

by diffuse losses associated with a specific land-type 

that is defined by a typology. These values were 

estimated by fitting quantile regression models to 

median concentrations calculated for water quality 

stations. An ETC value can be interpreted as the 

expected proportional contribution of a land-type to 

concentration at a downstream point in the drainage 

network. Alternatively, it can be interpreted as the 

expected concentration for a catchment comprised of 

only that land-type. 

ETY Empirical Type Yield. The expected annual load per 

unit area (cfu ha-1 yr-1), realised at a point in the 

drainage network (post attenuation), that is generated 

by diffuse losses associated with a specific land-type 

that is defined by a typology. These values were 

estimated by fitting quantile regression models to 

annual loads calculated for water quality stations. An 

ETY value can be interpreted as the expected 

proportional contribution of a land-type to yield at a 

downstream point in the drainage network. 

Alternatively, it can be interpreted as the expected yield 

for a catchment comprised of only that land-type. 
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Term Definition 

Export coefficient Rates of diffuse E.coli loss from land (cfu ha-1 yr-1) to 

streams. 

Factor Environmental variables that are used to define land-

types in typologies including land use/cover, elevation 

and soil drainage.   

Instream load In this study, the in-river load calculated for a water 

quality monitoring station from infrequent (e.g., 

monthly) observations of E. coli concentration and daily 

flow.  

Instream yield Instream load standardised by (divided by) catchment 

area. In this study the units are giga cfu ha-1 yr-1, where 

giga is 109. 

Land use Categorical description of land use. In this study a total 

of nine categories were used that include categories 

that, strictly speaking, are descriptions land cover (i.e., 

“Natural”, “Bare” and “Water”). 

OLS Ordinary Least Squares regression. 

Process-based catchment water 

quality models 

Models that represent  separate processes such as 

contaminant loss from land and attenuation to produce 

a prediction of the instream load or concentration at 

downstream points in the drainage network. An 

example of a process-based model that is discussed in 

this report is CLUES. 

Land-type A type (i.e., a class of land) defined by a typology. In 

this report land-types are defined by land use 

categories with, optionally, one or more additional 

environmental categories describing variation in 

elevation, temperature, moisture and soil drainage. In 

places in this report, land-type is shortened simply to 

‘type’.  

Typology A system of land types that is used to classify and 

group land areas that are alike in terms of their 

contribution to E. coli concentration and loads in the 

downstream drainage network. In this study, several 

typologies were defined and tested. These typologies 

were defined by subdivision of several factors into 

categories. The factors include land use or cover (sub-

divided into categories such as Dairy, Sheep & Beef, 

Native, Exotic Forest, and Urban) and the 

environmental factors: soil drainage (sub-divided into 

categories of poorly drained and well drained), land 

elevation (sub-divided into categories of low and high), 

temperature and moisture.  
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Executive Summary 

Faecal Indicator Bacteria (FIB) are a key freshwater contaminant that the National Policy 

Statement – Freshwater Management (NPS-FM) requires regional councils to manage. FIB 

that is discharged into freshwater indicates that pathogens that are harmful to humans may be 

present. The concentration of a specific FIB, the bacterium Escherichia coli (E. coli), is used 

as an indicator of human or animal faecal contamination and the risk of infectious human 

disease from waterborne pathogens in water used for contact recreation and drinking. The 

NPS-FM includes E. coli attributes that must be used by regional councils to set target states 

in rivers. In addition, the NPS-FM requires that regional councils define limits or management 

plans to resource use to achieve these targets. Typically, models are used to predict E. coli 

loads or concentration in freshwater receiving environments under both existing catchment 

conditions and some possible future set of conditions, termed scenarios, associated with 

change land use or management. Regional councils use the results of scenario analysis to 

formulate achievable targets and associated limits or management plans to achieve these. 

E. coli is sampled at over 1,000 long term river water quality monitoring stations across New 

Zealand every month. The concentration of E. coli in each sample is measured in the laboratory 

and reported as colony forming units (cfu) or most probable number (MPN) per 100 ml. The 

different units reflect different test methods, but they both represent the number of viable 

organisms in a 100 millilitre sample of water. For the purposes of this study the two 

measurement units were assumed to be equivalent. 

Analyses associated with NPS-FM implementation commonly use a class of catchment model 

that we call process-based models. Process-based models explicitly represent processes 

including contaminant loss in the catchment (source losses), transport to downstream 

receiving environments, and attenuation (i.e., reduction in loads between the point of discharge 

and downstream receiving environments by natural processes). Setting up process-based 

catchment E. coli models involves quantifying at least two types of parameters: (1) 

representing rates of E. coli loss in the catchment and (2) representing rates of attenuation. 

The parameters representing both diffuse losses and attenuation are typically calibrated by to 

instream loads observed at water quality monitoring stations. Calibration of process-based 

catchment E. coli models is challenging due to the complexity of the processes involved and 

data constraints. A significant challenge for process-based models is robust accounting and 

reporting of uncertainty. Combining all sources of uncertainty to fully characterise catchment 

model uncertainty is difficult and rarely undertaken. However, failing to quantify and report 

uncertainties can lead to overconfidence in the evidence produced by catchment modelling 

and limits the ability to make risk management-based decisions. 

This study aimed to investigate the feasibility of fully empirical catchment E. coli models as an 

alternative to process-based models. This class of model is extremely simple and represents 

all processes leading to E. coli concentrations and loads in a receiving environment as the 

function of type of land (hereafter land-types) in the upstream catchment. While this approach 

is an extremely simplified representation of reality, it offers some advantages in terms of 

transparency, ease of implementation, and defensibility as well as more easily estimated 

model uncertainty. 

We attempted to derive empirical models that can be used to predict E. coli concentrations 

(cfu 100 ml-1) and loads as yields (cfu ha-1 yr-1) as a function of the proportions of the upstream 

catchment occupied by land (see Table A), respectively. These models are expressed 

mathematically as: 

𝑌 =  𝐸𝑇𝑌1𝑃1 +  𝐸𝑇𝑌2𝑃2 +  𝐸𝑇𝑌3𝑃3 + ⋯ 𝐸𝑇𝑌𝑚𝑃𝑚 + 𝑃𝑆𝑌 



 

 Page ix  

𝐶 =  𝐸𝑇𝐶1𝑃1 +  𝐸𝑇𝐶2𝑃2 + 𝐸𝑇𝐶3𝑃3 + ⋯ 𝐸𝑇𝐶𝑚𝑃𝑚 + 𝑃𝑆𝐶 

where, Y is the yield (cfu ha-1 yr-1) and C the median concentration (cfu 100 ml-1) at the 

evaluation point, and PSY and PSC are the yields or concentrations associated with upstream 

point sources, 𝑃1, 𝑃2, 𝑃3, … 𝑃𝑚 are the proportions of catchment area occupied by each land-

type in the upstream catchment, and 𝐸𝑇𝑌1, 𝐸𝑇𝑌2, 𝐸𝑇𝑌3 … 𝐸𝑇𝑌𝑚 and 𝐸𝑇𝐶1, 𝐸𝑇𝐶2, 𝐸𝑇𝐶3 … 𝐸𝑇𝐶𝑚 

are the empirically derived parameters for yields and concentrations, respectively. The 

parameters are derived from statistical regression models fitted to observations of E. coli at all 

available river water quality monitoring stations nationally. The parameters can be interpreted 

as the expected proportional contribution of each land-type to concentration or yield. 

Alternatively, the parameters can be interpreted as the expected concentration or yield for a 

catchment comprised of only that land-type. 

We failed to define a satisfactory empirical model for E. coil yields but did derive a satisfactory 

model for median concentrations. The model allows predictions of site-median E. coli 

concentrations, and the lower and upper bounds of the 90% prediction interval of this value, to 

be made for any catchment in New Zealand using the above equation and parameters (ETC) 

shown in Table A. The empirical model can also be used to simulate effects of land use change 

or mitigation actions on median E. coli concentrations by changing the proportion of catchment 

occupied by particular land-types and by applying appropriate changes to the model 

parameters.  

The empirical models presented in this report provide simple and easily used tools that can be 

applied at any location within New Zealand. We have developed a dataset that provides 

proportions of catchment area occupied by each land-type defined by the E. coli concentration 

model for all segments of national digital river network1 (catchment area >10 km2). These data 

could also be used for national- and regional-scale assessments that aim to rapidly assess 

impacts of land use and land management scenarios at any location in New Zealand.  

An important caveat that applies to the empirical models is associated with the national extent 

of the dataset that was used to derive the parameters. Because the water quality station data 

were limited, we were only able to derive robust ETCs for a limited number of land-types. This 

means the models only coarsely resolve landscape-scale variation in the contribution of land 

to E. coli concentrations in downstream receiving environments. An additional caveat that 

applies to the empirical model is that as the spatial extent of a modelled domain reduces (e.g., 

they are used at the scale of individual catchments), there is a reduction in applicability of the 

model parameters (ETCs). This is because the empirical models were fitted to a national 

dataset and the ETC values are therefore national in scope. As the model domain decreases, 

the parameters will be potentially biased (not represent the conditions associated with the 

smaller model domain). 

We note that catchment models are used in scenario analyses. In this type of application, the 

objective is generally to evaluate relative differences in concentrations and loads between 

scenarios. It is reasonable to assume that the uncertainty of relative differences will be less 

than the uncertainty of predictions of absolute quantities. However, this study did not test the 

validity of this assumption, and this would be a useful direction for future research. 

 

  

 
1 The digital network associated with the River Environment Classification (version 2.4) described by Snelder and Biggs (2002). 
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Table A. ETC parameters for the empirical catchment E. coli concentration model for each of 

the 17 Types represented by the model. The values can be interpreted as the contribution of 

each land-type to the best estimate, upper and lower bounds for the 90% prediction intervals 

of E. coli concentration (cfu 100 ml-1). Note that the best estimate and the prediction interval 

limits are defined by three separate regression models that are independent of each other. 

This means that the parameter values are not necessarily expected to follow an order that is 

consistent with the point on the probability distribution that each model pertains to. 

Land-type Best estimate 
Prediction 

interval lower 
bound 

Prediction 
Interval upper 

bound 

Bare 0 0 0 

Cropland 159 113 477 

Dairy_PoorlyDrained 381 118 1987 

Dairy_WellDrained 391 104 987 

ExoticForest_HighElev_PoorlyDrained 25 21 -46 

ExoticForest_HighElev_WellDrained 16 -38 139 

ExoticForest_LowElev_PoorlyDrained 128 37 205 

ExoticForest_LowElev_WellDrained 8 41 -104 

Natural_HighElev -1 3 17 

Natural_LowElev 147 11 475 

Orchard&Vineyard 310 61 240 

Sheep&Beef_HighElev_PoorlyDrained 100 13 138 

Sheep&Beef_HighElev_WellDrained 43 2 363 

Sheep&Beef_LowElev_PoorlyDrained 349 48 865 

Sheep&Beef_LowElev_WellDrained 183 89 724 

Urban 754 115 2815 

Water 0 0 0 
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1 Introduction 

Faecal indicator bacteria (FIB) are a key freshwater contaminant that the National Policy 

Statement – Freshwater Management (NPS-FM, NZ Government 2023) requires regional 

councils to manage. FIB are discharged into freshwater by animals, effluent and waste water 

discharges, and stormwater run-off. The presence of FIB in freshwater indicates that other 

pathogens that are harmful to humans may be present. The concentration of a specific FIB, 

the bacterium Escherichia coli (E. coli), is used as an indicator of human or animal faecal 

contamination and the risk of infectious human disease from waterborne pathogens in water 

used for contact recreation and drinking. E. coli is sampled at over 1,000 long term river water 

quality monitoring stations across New Zealand every month. The concentration of E. coli in 

each sample is measured in the laboratory and reported as colony forming units (cfu) or most 

probable number (MPN) per 100 ml. The different units reflect different test methods, but they 

both represent the number of viable bacteria in a 100 millilitre sample of water.  

The NPS-FM includes two E. coli attributes that must be used by regional councils to set target 

states in all rivers and at specified primary contact sites. The first attribute (NPS-FM Appendix 

2A) is applicable to all rivers and comprises four statistics that are derived from monthly 

observations, including the median, the percentage of samples exceeding 260 and 540 E. coli 

100 ml-1 and the 95th percentile. Monitoring stations are graded into bands between A and E 

based on these statistics and the bands represent differing levels of infection risk associated 

with exposure to the site. The second attribute (NPS-FM Appendix 2B) is applicable to primary 

contact sites only. The 95th percentile of E. coli concentrations of samples collected at primary 

contact sites during the bathing season are graded Excellent to Poor. Regional councils are 

required to use observation data to establish the baseline state of the E. coli attributes at 

monitoring stations and primary contact sites and to set target states for all rivers and lakes in 

their regions. If current states are not compliant with the target state (i.e., E. coli concentrations 

exceed that allowed by the chosen band), councils are required to set limits and/or develop 

management plans to achieve the target state.  

Because there are potentially many limits and actions that can be used to achieve target 

states, finding the most acceptable solution involves exploration of options. Integral to this is 

the use of catchment models that provide a basis for simulating the impacts of land use and 

management on contaminant levels in freshwater receiving environments. Catchment models 

can be used to link E. coli losses from multiple sources in a catchment, including diffuse losses 

from land and point source losses, to concentrations and loads in downstream receiving 

environments (e.g., Semadeni-Davies and Elliott 2016; Muirhead 2019). Once set up and 

calibrated, catchment models can be used to explore the potential impact of alternative policy 

options, or planned mitigation actions, relating to changes in land management, land use and 

point sources.   

Process-based catchment models are based on a mass balance, in which it is assumed that 

observed instream loads are the sum of the upstream source contributions, less any net loss 

of mass during transport down the drainage network. The net loss is referred to as 

“attenuation”. Attenuation of E. coli occurs due to natural losses or decay of organisms along 

transport pathways, which may be due to a number of processes including die-off (Wilkinson 

et al. 2011). Setting up process-based catchment E. coli models involves defining parameters, 

which at least quantify rates of E. coli loss from multiple sources (including land) and 

attenuation rates. Depending on the level of detail of the processes a model represents, there 

are significant difficulties associated with calibration of process-based E. coli models in New 
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Zealand due to inadequate data and a lack of knowledge of the mechanisms that influence 

concentrations and fluxes of organisms through time. For example, Wilkinson et al. (2011) 

showed that pulses of E. coli in the Motueka and Sherry rivers were associated with storm-

event flows. In addition, this study showed that E. coli was transferred to, and from, the 

riverbed in association with different stages of storm hydrographs. To adequately 

parameterise these processes in a catchment model would require more frequent E. coli 

observations than are generally available.  

We propose a new class of purely empirical catchment E. coli models (hereafter ‘empirical 

models’). Like process-based catchment models, the empirical models can be used to make 

“what if” simulations of changes in catchment E. coli loads or concentrations under changes 

in land use, land management and point sources. The primary difference between these 

empirical models and process-based water quality catchment models (hereafter ‘process-

based’ models) is how the models are parameterised. Process-based models explicitly 

represent processes of contaminant loss from land (source losses) and attenuation to produce 

a prediction of the instream load or concentration at downstream points in the drainage 

network (Elliott et al. 2016). We acknowledge that process-based models may represent the 

processes in very lumped forms, for example loss from land may be represented by a single 

parameter whereas a more detailed representation might include different pathways such as 

overland and sub-surface flow.  

In contrast, our empirical models represent loads and concentrations of E. coli at a point in the 

drainage network as a function of the sum of the proportions of catchment area occupied by 

different land-types weighted (i.e., multiplied) by constants that represent the contribution from 

those types. The land-types are defined by a typology that represents spatial variation in the 

E. coli contributions that arise due to differences in land use or cover (e.g., Dairy, Sheep & 

Beef, Exotic Forest, Natural) and environmental factors that further control E. coli contribution 

rates from land (e.g., elevation, soil drainage). The weights that are applied to each land-type 

therefore represent the diffuse source loss rate from that land-type and the attenuation of that 

loss, which means that empirical models represent these two processes with a single 

parameter. 

For this study, we define an Empirical Type Yield (ETY) to be the expected annual load per 

unit area (units of cfu ha-1 yr-1), realised at a point in the drainage network (post attenuation), 

generated by diffuse losses associated with a specific land-type that is defined by a typology. 

Tables of ETYs (and their uncertainties) for typologies that represent all land in New Zealand 

can be estimated using statistical models from the available monitoring data. These values 

can then be used to construct catchment models for any stream or river location in New 

Zealand without the need to calibrate parameters representing loss and attenuation. We also 

define the Empirical Type Concentration (ETC) to be the E. coli concentration realised at a 

point in the drainage network (post attenuation, units of cfu 100 ml-1), generated by diffuse 

losses associated with a specific land-type that is defined by a typology. The available 

monitoring data can be used to derive tables of ETCs (and their uncertainties) for typologies 

that represent all land in New Zealand in the same manner as ETYs. An advantage of the 

empirical concentration models over the yield models is that there are significantly more sites 

available across New Zealand for which concentration data are available compared to load 

estimates. This means that, compared to ETYs, there is more statistical power and therefore 

the possibility of deriving robust ETCs for a more detailed typology (i.e., more land-types and 

greater environmental specificity). 
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The empirical models offer advantages in terms of transparency and ease of implementation. 

In addition, the uncertainties of the empirical models are easily estimated. The main 

disadvantage with the empirical approach is the number of land-types, and therefore the 

spatial detail that can be discriminated by the models and the accuracy of the predictions are 

limited by the availability and distribution of water quality data. It is also important to 

acknowledge that the empirical approach greatly simplifies the underlying processes. The 

simplifications include the lack of spatial detail associated with the distribution of the sources 

within catchments and the lumping of loss and attenuation in a single parameter. This means 

that empirical models are cruder than more detailed mechanistic models and cannot simulate 

certain types of interventions such as the impact of changes to point source discharges. 

This study used the available data to attempt to estimate ETYs and ETCs for empirical E. coli 

models for New Zealand. We aimed to produce look up tables of these parameters for each 

land-type in simple typologies that could be used to predict E. coli loads and concentrations 

in rivers anywhere in New Zealand. These empirically based model parameters can provide 

alternative, or complementary, approaches to process-based catchment modelling that may 

be appropriate in some circumstances and that can be used to simulate the impact of 

management actions on E. coli loads and concentrations. A second aim of the study, therefore, 

was to show how such simulations could be made and describe the changes in E. coli for 

some example scenarios. 
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2 Overview 

The analyses undertaken in this study are shown schematically in Figure 1. The first step 

involved assembling water quality monitoring data (including flows), point source discharge 

data and spatial environmental data, including data describing New Zealand’s drainage 

network, which is described in Section 3.  

 

Figure 1. Schematic diagram of the input data and analyses undertaken by this study.  The 

blue parallelograms indicate existing input data. The yellow hexagons indicate preparation of 

specific input data to subsequent analysis steps. The white rectangles indicate analyses and 

associated outputs from the study. 

 

The second step was to use the data to derive instream E. coli yields and concentrations at 

water quality monitoring stations that are attributable to diffuse sources (i.e., having removed 

the contribution from major point sources). In addition, the environmental data were used to 

construct typologies that were used to describe the composition of land-types in the 

catchments of all water quality monitoring stations. These steps are described in Sections 4.1 

and 4.2. 

Fit alternative empirical yield
and concentration models

Derive 
typologies for

empirical models

Select “best” empirical yield
and concentration model
and use coefficients as

parameters ETY and ETC in
catchment models

   Spatial environmental 
data

(land use, soils
climate, topography)

Water quality
monitoring data
(concentrations 

and flows)

Calculate instream
yields attributable 
to diffuse sources

Calculate instream
concentrations 
attributable to 
diffuse sources

Point 
source
data

Use catchment models
to simulate example scenarios
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The third step was to derive parameters for empirical models, an overview of which follows. 

The empirical models represent the yield or concentration of E. coli attributable to diffuse 

sources at a location in the drainage network as the weighted sum of the proportion of 

catchment land area occupied by a series of land-types. This is expressed mathematically as 

follows: 

𝑍 =  𝛽1𝑃1 + 𝛽2𝑃2 + 𝛽3𝑃3 + ⋯ 𝛽𝑚𝑃𝑚   Equation 1 

where Z represents the concentration or yield of E. coli at a location in the drainage network, 

𝑃1, 𝑃2, 𝑃3, … 𝑃𝑚 are the proportions of catchment area occupied by each land-type in the 

upstream catchment, and 𝛽1, 𝛽2, 𝛽3 … 𝛽𝑚 are coefficients derived from statistical regression 

models. The coefficients can be interpreted as the expected proportional contribution of each 

land-type to concentration or yield. Alternatively, the coefficients can be interpreted as the 

expected concentration or yield for a catchment comprised of only that type.  

The coefficients 𝛽1, 𝛽2, 𝛽3 … 𝛽𝑚 are derived by fitting linear regression models to the available 

water quality station data. These regression models have the same form as Equation 1, but Z 

represents data describing the observed yields or concentration at water quality stations after 

adjustment for point source contributions in the catchment. The regression model predictors 

are the proportion of the catchments of each water quality station that are occupied by each 

land-type. This is expressed mathematically as: 

[
𝑍1

⋮
𝑍𝑛

] = [

𝑃1,1 ⋯ 𝑃1,𝑚

⋮ ⋱ ⋮
𝑃𝑛,1 ⋯ 𝑃𝑛,𝑚

] × [
𝛽1

⋮
𝛽𝑚

]  

Equation 2 

where Z is a 1 x n vector of the observed concentrations or yields at the n water quality stations 

after adjusting for any point source discharges in the catchment upstream, the n x m matrix 

represents the proportion of the catchment of each of n water quality stations (rows) in each 

of m land-types (columns), and β is 1 x m vector of the fitted regression coefficients for each 

of the m land-types. Note that there is one fitted regression coefficient for each land-type. Note 

also that the fitted model has no intercept term, which is consistent with concentration or yield 

being zero if there is no land.  

To be clear that the derived coefficients (i.e., 𝛽1, 𝛽2, 𝛽3 … 𝛽𝑚) are used as parameters in 

empirical concentration and yield models, we refer to them hereafter as empirical type yields 

(ETY) and empirical type concentrations (ETC). The ETY is the expected annual load per unit 

area realised at a point in the drainage network (i.e., having been attenuated) that is generated 

by a specific land-type that is defined by a typology. The units of ETYs are cfu ha-1 yr-1. The 

ETC is the expected concentration, realised at a point in the drainage network (i.e., having 

been attenuated), that is generated by a specific land-type that is defined by a typology. The 

units of ETCs are cfu 100 ml-1.  

The general form of the empirical catchment water quality models for yield and concentration 

are given by: 

𝑌 =  𝐸𝑇𝑌1𝑃1 +  𝐸𝑇𝑌2𝑃2 +  𝐸𝑇𝑌3𝑃3 + ⋯ 𝐸𝑇𝑌𝑚𝑃𝑚 + 𝑃𝑆𝑌  Equation 3 

𝐶 =  𝐸𝑇𝐶1𝑃1 +  𝐸𝑇𝐶2𝑃2 + 𝐸𝑇𝐶3𝑃3 + ⋯ 𝐸𝑇𝐶𝑚𝑃𝑚 + 𝑃𝑆𝐶  Equation 4 

where, Y is the yield and C the concentration at a point in the drainage network, PSY and PSC 

are the yield or concentration forms of the catchment point source contributions (as described 

in 4.1.3), 𝑃1, 𝑃2,  𝑃3, … 𝑃𝑚 are the proportions of area occupied by each land-type in the 
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upstream catchment, and 𝐸𝑇𝑌1,  𝐸𝑇𝑌2,  𝐸𝑇𝑌3 … 𝐸𝑇𝑌𝑚 and 𝐸𝑇𝐶1,  𝐸𝑇𝐶2, 𝐸𝑇𝐶3 … 𝐸𝑇𝐶𝑚 are the 

empirically derived parameters for yields and concentrations, respectively.  

The fourth set of analyses undertaken by this study were using the derived models to simulate 

some simple scenarios that concern the impact of mitigations and land use changes on E. coli 

concentrations at the water quality monitoring stations. The analyses and the results are 

described in Section 6.  

3 Data 

3.1 River data 

3.1.1 Water quality data 

River water quality data was obtained for long-term state of environment monitoring from 

regional council and NIWA records as part of the most recent national state of the environment 

assessment (Whitehead et al. 2021a). Methods describing the acquisition of river water quality 

monitoring data and processing are set out in Whitehead et al. (2021a). The dataset included 

1030 water quality monitoring stations with E. coli observations up to the end of 2020. 

3.1.2 Flow data 

For the water quality monitoring stations that could be associated with river flow gauging 

stations, we obtained the entire time series of available mean daily flow data from regional 

councils and NIWA databases. River flow gauging stations were only reliably identified, and 

flow records obtained, for a subset (~330) of the water quality monitoring stations. 

3.1.3 Point source data 

Point source contributions of E. coli in the catchment of each monitoring station were obtained 

so that the total catchment mass loss from point sources on an annual basis could be 

estimated (see Methods). Point sources were based on a preliminary catalogue of annual 

point source loads (cfu y-1) collated by NIWA (Annette Semadeni-Davies, pers comm.) from 

previous projects (e.g. Semadeni-Davies et al., 2018). 

3.2 Drainage network 

The hydrological connectivity for the analysis was defined by a GIS-based digital drainage 

network comprising rivers and catchment boundaries that is the basis for the River 

Environment Classification (REC; Snelder and Biggs, 2002). The digital network was derived 

from 1:50,000 scale contour maps; in version 2 (herein referred to as DN2.4) it represents 

New Zealand’s rivers as 590,000 segments (delineated by upstream and downstream 

confluences), each of which is associated with a sub-catchment.  

3.3 Land use 

Land use nationally was defined based on land cover information from the Land Cover 

Database (LCDB v5.02), and a further separation of pastoral land cover into Dairy and Sheep 

and Beef land uses based on information about the extent of Sheep and Beef and Dairy farm 

units obtained from Monaghan et al. (2021). We aggregated LCDB classes into nine simplified 

land use categories, where the aggregation included judgements about expectations of 

similarity in E. coli loss rates between land cover categories. The reclassified categories are 

 
2 https://lris.scinfo.org.nz/layer/104400-lcdb-v50-land-cover-database-version-50-mainland-new-zealand/ 
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Natural, Exotic Forest, Sheep & Beef, Dairy, Cropland, Orchard & Vineyard, Urban, Bare, and 

Water and are further described in Table 1.  

Table 1. Re-classification of LCDBV5 Name_2018 classes in land use categories used in 

this study. 

Class_2018 LCDBV5 Name_2018 Reclassified category 

0 Not land Bare 

1 Built up Urban 

2 Urban Park Urban 

5 Transport Inf Urban 

6 Mines&Dumps Urban 

10 Sand&Gravel Bare 

12 Landslide Bare 

14 Snow&Ice Bare 

15 Alpine Grass Natural/ Sheep & Beef 2 

16 Gravel&Rock Bare 

20 Lake&Pond Water 

21 River Water 

22 Estuarine Water 

30 Cropland Cropland 

33 Orchard&Vineyard Orchard&Vineyard 

40 High Producing Grass Dairy/Sheep&Beef 2 

41 Low Producing Grass Dairy/Sheep&Beef 2 

43 Tussock Grassland Natural/ Sheep & Beef 1 

44 Depleted Grassland Natural/ Sheep & Beef 1 

45 Herbaceous Freshwater Water 

46 Herbaceous Saline Water 

47 Flaxland Natural 

50 Fernland Natural 

51 Gorse&Broom Natural 

52 Manuka&Kanuka Natural 

54 Broadleaved Indigenous hardwoods Natural 

55 Sub Alpine Shrubland Natural 

56 Mixed Exotic Shrubland Natural 

58 Grey Scrub Natural 

64 Forest Harvested Exotic Forest 

68 Deciduous Hardwood Natural 

69 Indigenous Forest Natural 

70 Mangrove Water 

71 Exotic Forest Exotic Forest 

Notes: 

1. Depleted and Tussock grassland areas that were coincident with Sheep & Beef land use (as 

defined by Monaghan et al. 2021) were specified as Sheep & Beef; remaining areas were 

defined as natural. 

2. Productive grassland areas that were coincident with Dairy land use (as defined by 

Monaghan et al. 2021) were specified as Dairy; remaining areas were defined as Sheep & 

Beef. 
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3.4 Environmental factors 

Muirhead et al. (2023) used three environmental factors, in addition to land use, to describe 

the risk of E. coli loss from land: elevation, drainage and wetness. Muirhead et al. (2023) 

subdivided the three environmental factors into categories based on nominally defined 

thresholds. We adopted Muirhead et al.'s (2023) factors and categories as a starting point for 

defining the typologies used in this study and included an additional factor: temperature.  

We obtained spatial data layers that covered all New Zealand and represented each of the 

four environmental factors. The elevation layer was obtained from the Land Environments of 

New Zealand dataset (Leathwick et al. 2003). We subdivided elevation into two categories, 

High and Low, based on the 350 m asl threshold proposed by Muirhead et al. (2023). The 

temperature layer was represented by mean annual temperature, which was also was 

obtained from the Land Environments of New Zealand dataset. We subdivided temperature 

into two categories, Cool and Warm, based on a 10 degrees Celsius threshold. We obtained 

the drainage layer from the Land Resources Information (LRI) spatial data layers (Newsome 

et al. 2008). We subdivided the LRIS drainage ordinal scale into two categories. Poorly 

Drained was defined by drainage classes 1 to 4 and Well Drained was defined by drainage 

class 5. We note that LRIS drainage ordinal category 4 is described as moderately well 

drained. We found that aggregating this ordinal category into our Well Drained category 

degraded the performance of our models and therefore allocated only the LRIS drainage class 

5 to our Well Drained category. Finally, we followed Muirhead et al. (2023) and based moisture 

on the moisture classification of Srinivasan et al. (2021). Srinivasan et al. (2021) subdivide the 

moisture factor into four categories, dry, moist, wet and irrigated. However, we followed 

Muirhead et al. (2023) and aggregated irrigated into the moist category based on the 

assumption that E. coli loss would be similar under moist and irrigated conditions. For some 

typologies, we reduced this to two moisture categories by reclassifying the Srinivasan et al. 

(2021) Moist category as Wet. Various combinations of the land use categories and the 

categories associated with the four environmental factors were used to define typologies as 

described in Section 4.2.  

4 Methods 

4.1 Preparation of water quality data 

4.1.1 Calculating instream loads 

We calculated the annual instream loads of E. coli (i.e., cfu passing a specific location in a 

river over a year) at each water quality monitoring station that complied with the following data 

requirement criteria:   

• Observations in at least 8 years in the 10 years up to the end of December 2020 

• At least 60 total concurrent observations of flow and concentrations 

• At least 80% of all quarters (defined as January-March, April-June, July-September, 

October-December) in the most recent 10 years.   

Rating curve methods were used to calculate the instream loads at sites that had concurrent 

E. coli concentration observations and river daily mean flow records by (1) identifying the best 

rating curve method (out of four possible alternatives) for each site (through manual inspection 

of all possible rating curves for each site), and then (2) calculating loads by combining the best 
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rating curve with the daily flow time series. A full description of the load calculation 

methodology is provided in Snelder et al. (2023). 

We used all available flow-concentration observations at each site to characterise the rating 

curves and set temporal trend terms in the underlying rating curve models so that the load 

calculations represented the expected mean annual load for 2020. Setting temporal trend 

terms to a fixed year (for those models that use time-variable components) means that trends 

were accounted for in the calculation of loads. We also estimated 95% confidence intervals 

for the estimated instream loads, following a bootstrapping procedure (described in Snelder 

et al. 2023). For the following analysis, instream loads are generally reported as instream 

yields, which are the instream load divided by the upstream catchment area, with units of cfu 

ha-1 yr-1. 

4.1.2 Calculating median concentrations 

We characterised E. coli concentrations at each water quality monitoring station as the median 

of all monthly observations for the 5-year period ending December 2020. The statistical 

precision of the median depends on the variability in the water quality observations and the 

number of observations. We therefore used filtering rules to restrict the sites that were used 

in our analysis to those for which the median could be calculated with reasonable precision. 

For a given level of variability, the precision of the median increases with the number of 

observations. As a general rule, the rate of increase in the precision of compliance statistics 

reduces for sample sizes greater than 30 (i.e., there are diminishing returns on increasing 

sample size with respect to precision above this number of observations; McBride 2005). In 

addition, because water quality observations tend to fluctuate seasonally, the precision of the 

calculated median is affected by how well each season is represented over the period of 

record. Our filtering rules therefore restricted site × variable combinations that were used in 

the analyses to those with measurements for at least 90% of the sampling intervals in that 

period (at least 56 of 60 months). Site by variable combinations that did not comply with these 

rules were excluded from the subsequent analysis. The time period and filtering rules are 

consistent with those used by Whitehead et al. (2021a). 

4.1.3 Calculating point source contributions to instream yields and concentrations 

Each point source in the dataset described in section 3.1.3 included location information in the 

form of a unique segment identifier (nzsegment). Point sources were assigned to the digital 

network based on the segment identifier, and load contributions were accumulated in the 

downstream direction of the network. Point source yield contributions at all segments of the 

digital network were estimated from the accumulated point source loads divided by upstream 

catchment area. Point source concentration contributions at all segments of the digital network 

were estimated by dividing point source loads by estimates of segment site mean flows 

(sourced from Woods et al. 2006), with appropriate conversion of units. We then compared 

this value to the observed median concentration of E. coli. Where the estimate of the point 

source contribution exceeded 5% of the observed median concentration of E. coli we removed 

the site from the analysis. Our rationale was that the exact contribution of point sources to the 

observed median concentration of E. coli cannot be accurately estimated from the load and 

therefore it was better to discard sites where point sources represented an appreciable 

contribution to concentration in general. 
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4.2 Definition of typologies 

We primarily defined land-types to be used as predictors (i.e., 𝑃1, 𝑃2, 𝑃3, … 𝑃𝑚 in Equation 1 and 

2) using the land use categories described in Section 3.3 (Urban, Exotic Forest, Dairy, Orchard 

& Vineyard, Natural, Sheep & Beef, Cropland, Water, Bare). When fitting the models, we 

excluded the Water and Bare land use categories based on the assumption that these 

categories make a negligible contribution to catchment E. coli loss (i.e., we expected ETY and 

ETC for these land-types to be zero). The credibility of these assumptions was tested as part 

of the model fitting process by plotting E. coli loads and concentrations as a function of the 

proportion of catchment area occupied by land categorised as Water and Bare. 

We defined additional typologies based on further subdivision of some of the land use 

categories by categorisation of the environmental factors described in Section 3.4, i.e., two 

elevation categories (Low and High), two drainage categories (Well Drained, Poorly Drained), 

two temperature categories (Cool and Warm) and three moisture categories (Dry, Moist and 

Wet). Different combinations of the land use categories with the environmental factors were 

used to produce typologies with differing numbers of land-types.  

The combination of all possible factors and their categories produces a typology with a total 

of 9 x 2 x 3 x 3 x 2 = 324 potential land-types. We could not reliably estimate regression 

coefficients for this number (324) of land-types because it is large compared to the size of the 

fitting dataset (i.e., ~320 sites for yields and ~900 for concentrations). However, all other things 

being equal, the utility and credibility of a catchment model that includes many land-types is 

higher than the converse because it accounts for spatial variation in E. coli diffuse sources 

and allows for simulation of more nuanced management actions. We therefore derived a 

further 16 typologies (in addition to the typology based only on land use categories) that 

comprised differing numbers of types (i.e., each typology had a differing value of m in Equation 

4).  

The additional typologies were defined by successively subdividing some of the land use 

categories based on various combinations of the elevation, drainage, temperature and 

moisture categories. We did not know in advance how many regression coefficients could be 

reliably estimated (by the statistical modelling process) for each response variable (i.e., 

concentrations and yields). We therefore defined the typologies and fitted models to them 

(referred to as model 1, 2, 3 etc) and inspected the fitted coefficients to determine the “best” 

model (see section 4.3.3).  

The definition of the typologies was subjective but was guided by the risk matrix of Muirhead 

et al. (2023) and expert opinion. Expertise was used to consider how the information available 

in the fitting dataset would produce fitted regression coefficients that reliably represent 

differences in E. coli contributions to yields and concentrations under differing land use and 

environmental conditions. Regression coefficients are most likely to be reliably estimated for 

land-types that are consistently occurring (i.e., are represented in the catchments of many 

sites) and have wide variation in occupancy across the fitting datasets (i.e., for which the 

predictor 𝑃𝑚 covers a wide range of non-zero values). We expected that the land use 

categories Sheep & Beef, Exotic Forest and Natural would the most consistently occurring 

non-zero and widely variable land use categories because these land uses can be dominant 

at the scale of catchments. We therefore expected that further subdivision of these land use 

categories by the environmental factors were most likely to produce reliable regression 

coefficients. We expected that Dairy would have narrower ranges of occupancy given that this 

land use is rarely dominant at the scale of catchments of the monitoring stations and therefore 

expected that further subdivision of this land use category was less likely to produce reliable 
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regression coefficients. The land use categories Cropland, Orchard & Vineyard and Urban 

tend to have low occupancy and we therefore did not expect that further subdivision of these 

land use categories would produce reliable regression coefficients. The 17 typologies (labelled 

1 to 17) therefore included differing subdivisions of each of Sheep & Beef, Exotic Forest, 

Natural and Dairy land use categories by Elevation, Drainage, Moisture and Temperature. The 

number of land-types and a description of how these were defined is provided in Table 2. 

Each typology comprised a series of land-types that were defined by the combination of factor 

categories, for example Sheep&Beef_LowElevation_PoorlyDrained_Wet. A complete 

description of the land-types defined by each of the typologies shown in Table 2 is contained 

in Appendix A (Table 5). 

The next step was to evaluate the proportion of land in each of the land-types that occur the 

catchment of all monitoring stations for each of the 17 typologies. To achieve this, we 

converted all spatial layers into coincident raster layers with 200m x 200m cells. The raster 

resolution was a practical decision made for processing efficiency and took into consideration 

the requirement for national coverage, differences in the source data precision as well as a 

spatial scale that was commensurate with the typical smallest productive land use entities. As 

a test of the imprecision introduced by this choice, we compared estimates of rasterised 

catchment areas against catchment areas defined for the DN2.4. We found that for catchment 

areas greater than approximately 2 km2 differences in the estimates were small (<5%). 

The raster layers were overlaid to generate maps of each typology and further overlaid with a 

coincident raster layer of the DN2.4 sub-catchments. The area associated with each land-type 

within each sub-catchment was evaluated. Sub-catchment land-type areas were then 

accumulated in the downstream direction of the DN2.4 network to derive the total upstream 

areas associated with each land-type for each network segment.  The accumulated type areas 

for each network segment were then normalised by the network segment upstream catchment 

area to provide estimates of the proportion of upstream area occupied by each type for each 

network segment. 
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Table 2. The 17 typologies that were tested, including the number of land-types in each and 

a description of how the land-types were defined.  

Typology Number of 
land-types 

Description of typology 

1 9 Subdivision of land use into nine categories 

2 12 Subdivision of land use into nine categories. Further subdivision of 
Sheep & Beef, Exotic Forest and Natural into two drainage categories. 

3 13 Subdivision of land use into nine categories. Further subdivision of Dairy, 
Sheep & Beef, Exotic Forest and Natural into two drainage categories. 

4 12 Subdivision of land use into nine categories. Further subdivision of 
Sheep & Beef, Exotic Forest and Natural into two elevation categories. 

5 13 Subdivision of land use into nine categories. Further subdivision of Dairy, 
Sheep & Beef, Exotic Forest and Natural into two elevation categories. 

6 12 Subdivision of land use into nine categories. Further subdivision of 
Sheep & Beef, Exotic Forest and Natural into two temperature 
categories. 

7 13 Subdivision of land use into nine categories. Further subdivision of Dairy, 
Sheep & Beef, Exotic Forest and Natural into two temperature 
categories. 

8 15 Subdivision of land use into nine categories. Further subdivision of 
Sheep & Beef, Exotic Forest and Natural into three moisture categories. 

9 17 Subdivision of land use into nine categories. Further subdivision of Dairy 
Sheep & Beef, Exotic Forest and Natural into three moisture categories. 

10 17 Subdivision of land use into nine categories. Further subdivision of 
Sheep & Beef, and Exotic Forest into two elevation and two drainage 
categories. Subdivision of Natural into two elevation categories. 
Subdivision of Dairy into two moisture* categories. 

11 17 Subdivision of land use into nine categories. Further subdivision of 
Sheep & Beef, and Exotic Forest into two elevation and two moisture 
categories. Subdivision of Natural into two elevation categories. 
Subdivision of Dairy into two moisture categories. 

12 21 Subdivision of land use into nine categories. Further subdivision of Dairy, 
Sheep & Beef, and Exotic Forest into two elevation and two drainage 
categories. Subdivision of Natural into two elevation categories.  

13 21 Subdivision of land use into nine categories. Further subdivision of Dairy, 
Sheep & Beef, Natural and Exotic Forest into two temperature and two 
drainage categories.  

14 23 Subdivision of land use into nine categories. Further subdivision of 
Sheep & Beef into two elevation, two drainage categories, and two 
moisture* categories. Subdivision of Natural and Exotic Forest into two 
elevation and two drainage categories. Subdivision of Dairy into two 
drainage categories. 

15 25 Subdivision of land use into nine categories. Further subdivision of 
Sheep & Beef into two elevation, two drainage categories, and two 
moisture* categories. Subdivision of Natural and Exotic Forest into two 
elevation and two drainage categories. Subdivision of Dairy into two 
elevation and drainage categories. 

16 29 Subdivision of land use into nine categories. Further subdivision of 
Natural and Sheep & Beef into two elevation, two drainage categories, 
and two moisture categories. Further subdivision of Exotic Forest into 
two elevation and two drainage categories. Further subdivision of Dairy 
into two elevation and two drainage categories.  

17 33 Subdivision of land use into nine categories. Further subdivision of 
Natural, Exotic Forest and Sheep & Beef into two elevation, two drainage 
categories, and two moisture categories. Further subdivision of Dairy into 
two elevation and two drainage categories. 

* Two moisture categories were defined by reclassifying the Srinivasan et al. (2021) Moist category as Wet.  
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4.3 Derivation of empirical model parameters 

4.3.1 Statistical modelling 

We attempted to derive the regression coefficients shown in Equation 2 for each response 

variable (E. coli yields and concentrations). Prior to fitting both the yield and concentration 

models, we subtracted the estimate of the point source contribution from each of the water 

quality station yields so that the response (i.e., 𝑌1,𝑛) was only representing the attenuated 

diffuse sources of E. coli.   

There are two considerations with the process of fitting the statistical model expressed in 

Equation 2. First, the distribution of site concentrations and yields at the water quality stations 

will generally not be normally distributed. Normally distributed data (more specifically, 

regression residuals) is a requirement of ordinary least squares regression (OLS). It is 

therefore common to apply transformations, such as a logarithmic transformation, to normalise 

the response when fitting OLS models. However, transformation of the concentration or yields 

would mean that the fitted regression coefficients (i.e., 𝛽1, 𝛽2, 𝛽3 … 𝛽𝑛) could not be interpreted 

as ETCs or ETYs for each land-type. We therefore used quantile regression instead of OLS 

to estimate the regression coefficients. Quantile regression is often used when the conditions 

of OLS are not met (Cade and Noon 2003). Whereas OLS estimates the conditional mean3 of 

the response variable given some predictor variables, quantile regression estimates a 

specified quantile of the data. We fitted the model represented by Equation 2 to the median 

(i.e., the 0.5 quantile) value using quantile regression. The prediction from the model should 

be considered as an estimate of the median, conditional on the predictors (i.e., 50% of cases 

can be expected to be greater than or less than the prediction). 

Because quantile regression is non-parametric, the fitted model does not describe the 

probability distribution within which prediction will lie. However, quantile regression models 

can be fitted to any quantile of the data. Therefore, in addition to fitting a model to the median 

(0.5 quantile), we also fitted models to the 0.05 and 0.95 quantiles (of the site-median 

concentrations and yields) to provide the lower and upper bounds of the 90% prediction 

interval4. Note that the median and the prediction interval limits are defined by three separate 

regression models that are independent of each other. This means that the coefficient values 

of the three models are not necessarily expected to follow an order that is consistent with the 

point on the probability distribution that each model pertains to. Quantile regression models 

were fitted using the quantreg package of the R Statistical Software (R Core Team 2023). 

The second complication is that the predictors (𝑃1, 𝑃2, 𝑃3, … 𝑃𝑚) are what is referred to as 

compositional data. That is, 𝑃1, 𝑃2, 𝑃3, … 𝑃𝑛 represent the composition of the catchment land as 

the proportions occupied by each type. Because the types are exhaustive and the predictors 

represent proportions, they sum to one and, therefore, the set of all proportions includes 

redundant information (e.g., 𝑃𝑛 = 1 −  ∑ 𝑃𝑖
𝑖=𝑛−1
𝑖=1 ). This means that another condition of 

multivariable regression, that the predictors are independent, is violated. Non-independence 

of predictors is referred to as multicollinearity because the implication is that there is 

correlation between the predictors.  

When there is multicollinearity in the predictors of a regression model, the estimated 

coefficients (i.e., values of 𝛽1, 𝛽2, 𝛽3 … 𝛽𝑚) can become sensitive to small changes in the model. 

 
3 The conditional mean of a random variable is its expected value – the value it would take “on average” over an arbitrarily large 

number of occurrences – given a certain set of "conditions". In a multiple linear regression model, these conditions are defined 

by the values of the independent (i.e., predictor) variables.  
4 The prediction interval indicates the range a future individual observation will fall. 
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For example, small changes in the predictors or cases that are included in the model can 

dramatically change the coefficient values or even their signs. This means that multicollinearity 

reduces the precision of the estimated coefficients and increases their p-values (i.e., 

decreasing their statistical significance and reducing confidence in the estimated values). 

Multicollinearity can therefore make it difficult to justify the model, and this increases as the 

severity of the multicollinearity increases. It is noted that multicollinearity is a problem for 

interpretation of the estimated coefficients but does not affect the predictions or the goodness-

of-fit (performance) statistics of the model (Neter et al. 2004).  

An option to avoid the problem of collinearity is to remove some of the strongly correlated 

predictors. In this analysis, we were wanting to evaluate the coefficients for all predictors, to 

provide parameter values for all land-types and, therefore, removing some of the predictors 

was not an option. However, the problems caused by multicollinearity reduce with increasing 

dataset size because sampling error reduces and precision increases as sample size 

increases (Mason and Perreault 1991). Because the datasets in this project were reasonably 

large, we adopted the approach of retaining all predictors and carefully inspecting the fitted 

coefficients and their standard errors to ensure that they were generally reasonable (i.e., were 

not so large as to render the coefficient unreliable). We also used cross validation (see Section 

4.3.2) to generate multiple instances of the fitted coefficients and used these to evaluate the 

sensitivity of the coefficients to the fitting data.  

4.3.2 Objective evaluation of the models 

We fitted the 17 models described by Table 2 to each response variable (E. coli concentrations 

and yields) and then evaluated these to determine the “best” model based on four aspects: 

(1) the predictive performance, (2) the predictive performance compared to alternative 

frequently used models, (3) the ability to estimate the 95% confidence interval, and (4) the 

stability of the fitted coefficients. These evaluations were carried out based on independent 

predictions of the response variables made for each water quality station by cross validation. 

Cross validation was carried out by first subdividing the dataset (representing the 

concentrations and yields at each water quality station) randomly into 10 equally sized subsets 

that are hereafter referred to as “folds”. We fitted 10 “realisations” of each model (i.e., of the 

0.05, 0.5 and 0.95 quantiles) by excluding one of the folds each time (the held-out fold). We 

used each of the 10 fitted models to predict the response for the associated held-out fold to 

obtain objective predictions (i.e., predictions for water quality stations that were not used in 

fitting the model) for each quantile and each water quality station.  

We evaluated the predictive performance of the models using two statistics: Nash-Sutcliffe 

efficiency (NSE) and percent bias (PBIAS). NSE indicates how closely the observations 

coincide with predictions (Nash and Sutcliffe 1970). NSE values range from −∞ to 1. A NSE 

of 1 corresponds to a perfect match between predictions and the observations. A NSE of 0 

indicates the model is only as accurate as the mean of the observed data, and values less 

than 0 indicate the model predictions are less accurate than using the mean of the observed 

data. Bias measures the average tendency of the predicted values to be larger or smaller than 

the observed values. Optimal bias is zero, positive values indicate underestimation bias and 

negative values indicate overestimation bias (Piñeiro et al. 2008). PBIAS is computed as the 

sum of the differences between the observations and predictions divided by the sum of the 

observations (Moriasi et al. 2007). The normalisation associated with NSE and PBIAS allows 

the performance of the models to be compared to criteria proposed by Moriasi et al. (2015), 

outlined in Table 3. 



 

 Page 25  

Table 3. Performance ratings for the measures of model performance used in this study. The 

performance ratings are from Moriasi et al. (2015). 

Performance Rating NSE PBIAS 

Very good NSE > 0.65 |PBIAS| <15 

Good 0.50 < NSE ≤ 0.65 15 ≤ |PBIAS| < 20 

Satisfactory 0.35 < NSE ≤ 0.50 20 ≤ |PBIAS| < 30 

Unsatisfactory NSE ≤ 0.35 |PBIAS| ≥ 30 

 

The second evaluation was a comparison of the NSE and PBIAS for the 0.5 quantile models 

with the same performance statistics achieved for equivalent random forest (RF) models. RF 

is a machine-learning method based on an ensemble of regression trees (Breiman 2001; 

Cutler et al. 2007). Because RF models can include many predictor variables and 

automatically fit non-linear relationships and high-order interactions, they achieve high 

accuracy. This means that RF models are an accepted method of making model-based 

predictions of current river concentrations and yields based on data obtained for water quality 

stations (e.g., Snelder et al. 2020; Whitehead et al. 2021b). RF-based models were fitted to 

the same response variable data as used in this study using a large set of predictors 

representing various aspects of the climate, topography, geology, land cover, and land use of 

the catchments of the water quality stations (see Snelder et al. 2023 for details). We expected 

that the RF models would perform better than our 0.5 quantile models but note that RF models 

do not produce interpretable coefficients that can be used as parameters in catchment nutrient 

water quality models. The purpose of the RF models, therefore, is to provide a fair benchmark 

against which to compare model performance. 

The third evaluation was of the estimation of the 90% prediction interval by the 0.05 and 0.95 

quantile models. From the cross-validation outputs we evaluated the proportion of the 

predictions of the median that were less than or greater than the predicted 0.05 and 0.95 

quantiles, respectively (i.e., the proportion of the predictions of the median that fell outside the 

90% prediction interval). We expected that on average (over the 10 cross validation 

realisations) 10% of the estimates of the median would lie outside of the 90% prediction 

interval.  

The fourth evaluation was of the stability of the fitted coefficients. From the cross-validation 

outputs, we retained the fitted coefficients (i.e., values of 𝛽1, 𝛽2, 𝛽3 … 𝛽𝑚) for each realisation. 

We compared the mean values and the standard deviation of the fitted coefficients over the 

10 realisations to the coefficients and their standard errors estimated for the full models (i.e., 

the models fitted to the entire dataset). We interpreted agreement of the mean and standard 

deviation of the coefficients estimated from the cross validation with their counterparts 

estimated from the full dataset to indicate that collinearity in the predictors was not causing 

sensitivity in the estimated coefficients (i.e., they were stable and reliable).   

We undertook a final evaluation of the plausibility of the fitted model coefficients by comparing 

them to the response variable (E. coli yields and concentrations) at the water quality stations. 

For each land-type we plotted the response variable against the proportion of catchment 

occupied, with the fitted model coefficient plotted at the position indicating a proportion 

occupancy of 1. We expected that, for each type, the fitted model coefficient would tend to be 

consistent with the observed response variables at sites having high occupancy (i.e., the fitted 

coefficients for each type would be similar to the observed response variables in catchments 

that are dominated by that type). This expectation is consistent with the physical meaning of 
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the fitted model coefficients as the expected proportional contribution of each type to 

concentration or yield.  

4.3.3 Determination of the best model 

For each response variable (E. coli yields and concentrations), we inspected the fitted models 

and, based on several considerations, selected a single “best” model. First, we used the NSE 

values as a measure of predictive performance of the models and assumed that, all other 

things being equal, better models have higher NSE values. Second, we considered that, all 

things being equal, better models would be derived from more detailed typologies (i.e., 

typologies with more land-types and therefore fitted models with more predictors) because 

this would better discriminate variation in land use and environmental factors.   

Third, we considered coefficient values of credible models would be positive (i.e., we expected 

all land-types to contribute E. coli apart from Bare and Water). We also considered that a 

ranking of the fitted coefficient values of the most credible models would be consistent with 

the E. coli runoff risk ranking matrix of Muirhead et al. (2023). Muirhead et al.'s (2023) risk 

matrix proposes that risk decreases with land use categories in the following order: Urban, 

Pastoral (i.e., Dairy and Sheep & Beef), Horticulture, Arable, Exotic Forest and other non-

productive land uses. The risk matrix proposes that for pastoral land uses, the E. coli runoff 

risk is higher for low elevation locations than high elevation due to farm intensity, with stocking 

rates reducing as farm elevation increases. The risk matrix also proposes that risk increases 

with decreasing drainage and increases with increasing wetness primarily due to increasing 

risk of overland flow, this being the dominant pathway for E. coli losses from land.  

Our fourth consideration was the significance of the fitted coefficients. We interpreted these 

as measures of confidence in their representation of the true value of the ETC or ETY. We 

considered that, all other things being equal, significant fitted coefficients were preferable to 

non-significant coefficients and models with greater numbers of significant coefficients were 

preferable to the converse. We also expected that the number of significant coefficients would 

decrease (i.e., p-values would increase) with increasing numbers of predictors (i.e., land-

types) due to decreasing statistical power.  

For each response variable, we considered that the “best” model represents a trade-off 

between the number of land-types, the NSE value, the consistency of the coefficient values 

with our prior understanding, and the proportion of the coefficients that were <0 and were 

significant (p < 0.05). This means that the best model is a judgement that does not mean that 

other models and their associated typologies are not useful or better in some circumstances. 

In addition, we note that given different or updated datasets, different models would be 

derived. Therefore, we declare a “best” model in this study but do not regard this as the only 

possible model.  

Finally, we quantified the overall uncertainty of the best model as the root mean square 

deviation (RMSD). RMSD is the mean deviation of the predicted values from their 

corresponding observations and is therefore a measure of the characteristic model uncertainty 

(Piñeiro et al. 2008). We calculated the RMSD after log (base 10) transformation of the 

predicted and observed values to achieve approximately normal error distributions.  
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5 Results 

5.1 Water quality monitoring station concentrations and instream yields 

The total number of water quality monitoring stations used in this study, i.e., that met the 

minimum data requirements and had a catchment area >2 km2, for concentrations and yields 

was 869 and 320, respectively (Figure 2 and Figure 3). The median E. coli concentrations 

varied over three orders of magnitude (Figure 4), and instream yields varied over two orders 

of magnitude (Figure 5).  
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Figure 2: Locations of water quality monitoring stations with median E. coli concentration data. 

The sites are coloured to indicate the evaluated site median concentrations (cfu 100 ml-1). 
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Figure 3: Locations of water quality monitoring stations with E. coli yield data. The sites are 

coloured to indicate the evaluated site E. coli yields (giga cfu ha-1 year-1). 
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Figure 4: Cumulative distribution of median E. coli concentrations at water quality monitoring 

stations.  See Figure 2 for site locations. Note that the y-axis has a log-scale. 
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Figure 5: Cumulative distribution of estimated instream E. coli yields at water quality 

monitoring stations. See Figure 3 for site locations. The error bars indicate the 95% confidence 

interval for the instream yields. Note that the y-axis has a log-scale. 

 

5.2 Empirical concentration model 

For sites with concentration data, the Sheep & Beef, Exotic Forest and Natural land use types 

were the most consistently occurring (i.e., are represented in the catchments of many sites) 

and had the widest variation in occupancy (i.e., occupancy ranged from zero to 100% of 

catchment area, Figure 6). The land use categories Bare, Cropland, Orchard & Vineyard and 

Water tended to have low occupancy (i.e., the proportion of catchment area occupied by these 

categories was most commonly zero) and variation across sites was restricted (i.e., very few 

sites had >50% occupancy by any of these categories). Visual inspection of Figure 6 

supported our assumption that contributions to E. coli by land categorised as Bare or Water is 

negligible.  
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Figure 6. Observed site median E. coli concentrations as a function of the proportion of 

catchment area occupied by the nine land use categories.  

The median E. coli concentrations (model response) for the 869 sites were not normally 

distributed (they were right skewed), justifying the use of quantile regression (Figure 4). The 

proportion of significant fitted coefficient values decreased with increasing numbers of 

predictors for models pertaining to all three quantiles (i.e., median (0.5 quantile), 0.05 and 0.95 

quantiles; Figure 7). There was also an increasing number of negative fitted coefficient values 

as the number of predictors included in the models increased (Figure 7).  
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Figure 7. Proportion of significant coefficients versus number of predictors for quantile models 

for E. coli concentration fitted to 14 sets of predictors (different typologies) for models 

pertaining to the 0.05, 0.5, and 0.95 quantiles. The numbers beside each point indicate the 

model number (1 to 14). The colour indicates the proportion of fitted coefficients that were 

negative.  
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From 17 potential models (Table 2) we judged Model 10 to be the best. Model 10 included 15 

predictors (i.e., land-types) excluding the Bare and Water and was based on subdivision of 

the land use categories by elevation and drainage (see Table 2 for details). Our rationale for 

the choice of Model 10 is set out below but we emphasise that this choice is a judgement and 

that other models and their associated typologies may be better in some circumstances.  

For Model 10, 20%, 60% and 47% of the fitted coefficients were significant for the 0.05, 0.5, 

and 0.95 quantile models. The model had a cross validated NSE of 0.51 and a PBIAS of  

-1.6%, which indicates good performance (NSE > 0.5, |PBIAS|<15%; Table 3) based on the 

criteria of Moriasi et al. (2015; Table 3, Figure 7).  

The performance of Model 10 compares favourably with the performance of a RF model fitted 

to the same dataset (NSE 0.71, Snelder et al. 2023). We expected the RF model to 

significantly out-perform the models fitted by this study because the RF model included a 

larger number of predictors and fitted non-linear relationships and high-order interactions 

(Cutler et al. 2007).  

For Model 10, there was one negative coefficient for the 0.5 and 0.05 quantile models and the 

0.95 quantile models had two negative coefficients (Figure 8). The negative coefficient for the 

0.5 quantile model was associated with the Natural_HighElev land-type with a value of -1, 

which was not statistically significant (Figure 8). We judged that this very small negative value 

could either be ignored or set to zero and in either case was a credible ETC parameter for a 

catchment model for this land-type (i.e., we expected this land-type makes a small to negligible 

contribution to E. coli concentrations). 

Models 1 to 7 were judged to be less appropriate than Model 10 because these had fewer 

predictors and were therefore less able to discriminate spatial variation in E. coli contributions. 

We note that Models 4 and 5 had NSE values of approximately 0.5 whereas Models 6 and 7 

had NSE values of approximately 0.46. The typologies underlying Models 4 and 5 were based 

on subdivision of the land use categories by the two elevation categories whereas Models 6 

and 7 were based on subdivision by temperature. We interpreted this as evidence that 

elevation was a better predictor of contribution of land to E. coli concentrations than 

temperature. Models 8 and 9 had the same and two more predictors than Model 10, 

respectively. However, these models had significantly lower performance than Model 10 (NSE 

was 0.36 and 0.39, respectively). The typologies underlying Models 8 and 9 were based on 

subdivision of the land use categories by the three moisture categories. We interpreted the 

lower NSE values for Models 8 and 9 compared to Models 4 and 5 as evidence that elevation 

was a better predictor of contribution of land to E. coli concentrations than moisture. In 

addition, Model 11 was similar to Model 10 with the same number of predictors but was based 

on subdivision of Sheep & Beef, Dairy and Exotic Forest by two moisture categories rather 

than two drainage categories. Model 11 had similar performance to Model 10 (NSE=0.5, 

PBAIS = -1.6%) but Model 11 had three negative coefficients. 

Model 12 had 21 predictors (including Bare and Water), the same performance (NSE=0.51, 

PBIAS=-1.5%), more significant coefficients than Model 10 and only one negative coefficient 

for the 0.5 quantile model (Figure 8). However, the further subdivision of Dairy into two 

elevation and two drainage categories (for Model 12) compared to just into two drainage 

categories (Model 10) was not well supported by the data (there was generally low occupancy 

for the four Model 12 Dairy categories) and the coefficient for the 

Dairy_HighElev_PoorlyDrained category, in particular, was unrealistic. We therefore judged 

that Model 12 was a less appropriate model than Model 10. Models 13 to 17 had a greater 

number of predictors than Model 10 but had similar performance (NSE ~ 0.5, PBBIAs ~ -1.6%) 
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and had at least two negative coefficients. Because we expected all land-types to contribute 

E. coli apart from Bare and Water, we judged that these models could not provide credible 

ETC parameters for a catchment model. Taken together, these results help to justify selecting 

a typology based on subdivision using elevation and drainage rather than temperature or 

wetness, and to choose Model 10 as the best model.  

The fitted coefficients for Model 10 were generally consistent with expectations (see Section 

4.3.3, Figure 8 and Table 4). For example, the highest values were associated with Urban, 

and Dairy land uses, and the lowest values were associated with Natural land cover. Within a 

land use, the coefficients were consistently lower for the High elevation category and Well 

Drained drainage category, which is consistent with the expectations set out in Muirhead et 

al. (2023). The standard errors for the fitted coefficients were largest for the Cropland and 

Orchard & Vineyard land-types, which is consistent with their low occupancy in our dataset 

(Figure 6).  

Table 4. ETC parameters for each of the 17 types derived from the best E. coli concentration 

model (Model 10). The values can be interpreted as the contribution of each type to the median 

E. coli concentration (cfu 100 ml-1). Note that the types Bare and Water were excluded from 

the regression model and are assumed to have ETC values of zero. Note that the best 

estimate and the prediction interval limits are defined by three separate regression models 

that are independent of each other. This means that the parameter values are not necessarily 

expected to follow an order that is consistent with the point on the probability distribution that 

each model pertains to. 

Land-type Best 
estimate 

Prediction 
interval 

lower bound 

Prediction 
interval 

Cropland 159 113 477 

Dairy_PoorlyDrained 381 118 1987 

Dairy_WellDrained 391 104 987 

ExoticForest_HighElev_PoorlyDrained 25 21 -46 

ExoticForest_HighElev_WellDrained 16 -38 139 

ExoticForest_LowElev_PoorlyDrained 128 37 205 

ExoticForest_LowElev_WellDrained 8 41 -104 

Natural_HighElev -1 3 17 

Natural_LowElev 147 11 475 

Orchard&Vineyard 310 61 240 

Sheep&Beef_HighElev_PoorlyDrained 100 13 138 

Sheep&Beef_HighElev_WellDrained 43 2 363 

Sheep&Beef_LowElev_PoorlyDrained 349 48 865 

Sheep&Beef_LowElev_WellDrained 183 89 724 

Urban 754 115 2815 
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Figure 8. Fitted coefficients for the 0.5 quantile of the best E. coli concentration model (Model 

10). Note that the x-axis is transformed to provide greater resolution of values with low 

magnitudes compared to higher magnitudes. The error bars indicate the standard errors for 

the fitted coefficients.  Note that the types Bare and Water were excluded from the regression 

model and are assumed to have ETC values of zero. 

For each land-type, the fitted coefficients for Model 10 were reasonably consistent with the 

observations of E. coli concentrations at the water quality stations having high occupancy by 

that type (Figure 9). For some types, the data did not include many or any water quality stations 

with high (e.g., >0.7) occupancy (e.g., Dairy_PoorlyDrained). However, for some types there 

was good representation by sites with high occupancy (e.g., Natural_HighElev_WellDrained, 

Urban, Sheep&Beef_LowElev_PoorlyDrained). In these cases, as the proportion occupancy 

increased, the central tendency of the observed E. coli concentrations converged on the fitted 

model coefficients (Figure 9). In addition, where there was not good representation by sites 

with high occupancy, the fitted coefficients were generally consistent with the extrapolated 

value of trend lines (red lines, Figure 9) fitted to the data.  
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Figure 9. Observed E. coli concentrations versus the proportion of catchment occupied by each land-type (panels).  For each type, the ETC values for the best 

model are indicated as a blue dot at the position on the x-axis indicating a proportion occupancy of 1. The red line is a linear regression indicating the 

expected value of E. coli concentration conditional on the proportion of catchment occupied by the type. The purpose of this line is show that as occupancy 

approaches 1, the central tendency of the observations tend to converge to the fitted coefficient. Note that the types Bare and Water were excluded from the 

regression model and are assumed to have ETC values of zero. 



 

 Page 38 of 59 

The mean of the proportion of predictions that were within the 90% prediction interval over the 

10 cross validation folds was 88% (range 83% to 94%, Figure 10). This indicates that the 90% 

prediction interval is a reliable measure of the uncertainty of the empirical concentration model 

predictions.

 

Figure 10. Observed versus predicted site median E. coli concentrations (points) and 90% 

prediction interval (grey error bars). The predictions and the estimated 95% prediction interval 

are independently derived for each water quality station by the cross validation. The green 

points indicate the observations that are within the 90% prediction interval and the red points 

indicate the observations that are outside of the 90% prediction interval. Note that the 

observed values are plotted on the Y-axis and predicted values on the X-axis, following Piñeiro 

et al. (2008). Red line: one-to-one line.   
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The RMSD of Model 10 (in log base 10 space) was 0.41. The 90% prediction interval for an 

estimated value can be evaluated as:  

90% 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =  10[𝑙𝑜𝑔10(𝑥) ± 1.65 × 𝑅𝑀𝑆𝐷]   Equation 5 

where 𝑥 is the estimated value in the original units, and RMSD is the reported model error 

(0.41). For example, the 90% prediction interval for an estimated value of 100 cfu 100 ml-1 is 

the range 21 to 475 cfu 100 ml-1. This large uncertainty in the model prediction is evident in 

the predictions shown in Figure 10 (noting that the axes are log10 transformed). 

The mean of each of the coefficient values for each quantile (i.e., 5th, 50th and 95th quantiles) 

over the 10 versions of the best model fitted by cross validation were generally consistent with 

the fitted coefficients for the full models as indicated by points lying close to the one-to-one 

line in Figure 11. In addition, the standard deviations of the coefficient values over the 10 

realisations of the models fitted by cross validation were approximately equal to the 

corresponding standard errors (see also Figure 11) for the fitted coefficients for the full model. 

This is an objective indication of the stability and reliability of the fitted parameters. 

Based on the observations above, the fitted coefficients for Model 10 (Table 4) were judged 

to be a credible set of ETC parameters for an empirical catchment water quality model for E. 

coli concentrations of the form indicated by Equation 4.  
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Figure 11. Comparison of coefficients fitted to each type in the full E. coli concentration model with the mean of 10 realisations of the same coefficients fitted by 

cross validation. The vertical error bars indicate the standard deviation of the coefficients over the 10 cross validation folds. The horizontal error bars are the 

standard errors of the coefficients fitted in the full models. The red dashed line is one-to-one and indicates perfect agreement. 
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5.3 Empirical yield model 

For sites with yield data, the Sheep & Beef and Natural land use types were the most 

consistently occurring (i.e., are represented in the catchments of many sites) and had the 

widest variation in occupancy (i.e., occupancy ranged from zero to 100%, Figure 12). The land 

use categories Bare, Cropland, Orchard & Vineyard and Water tended to have low occupancy 

(i.e., the proportion of catchment area occupied by these categories was most commonly zero) 

and variation across sites was restricted (i.e., very few sites had >50% occupancy by any of 

these categories). Visual inspection of Figure 12 supported our assumption that contributions 

to E. coli by land categorised as Bare or Water is negligible. The E. coli yields (model 

response) for the 320 sites were not normally distributed (right skewed), justifying the use of 

quantile regression (Figure 5). 

 

Figure 12. Observed site median E. coli yields as a function of the proportion of catchment 

area occupied by the nine land use categories.  
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The proportion of significant fitted coefficient values decreased with increasing numbers of 

predictors for models pertaining to all three quantiles (i.e., median (0.5 quantile), 0.05 and 0.95 

quantiles; Figure 13). There was also a trend in negative fitted coefficient values as the number 

of predictors included in the models increased (Figure 12). The performance of the fitted 

models, as measured by NSE, varied between 0.12 (Model 1) and 0.42 (Model 11, Figure 12). 

All models had absolute PBIAS values no greater than 6%. 

Models 1, 2, 3, 8 and 9 did not achieve satisfactory performance (NSE > 0.35, |PBIAS|<20%; 

Table 3) based on the criteria of Moriasi et al. (2015, Figure 12). Although the remaining 

models did achieve satisfactory performance, they had at least three negative coefficients and 

the proportion of significant fitted model coefficients was not greater than 30% for any of the 

0.5 quantile models. We therefore judged that no model would provide a satisfactory basis for 

defining empirical catchment model parameters (i.e., ETY values).  
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Figure 13. Proportion of significant coefficients versus number of predictors for quantile 

models for E. coli yield fitted to 17 sets of predictors (different typologies) for models pertaining 

to the 0.05, 0.5, and 0.95 quantiles. The numbers beside each point indicate the model number 

(1 to 17).   
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6 Example simulations 

6.1 Scenarios 

We used the empirical E. coli catchment concentration model derived above to simulate three 

catchment management scenarios. Simulations were made for the catchments of the 869 

water quality monitoring stations (Figure 2) as follows: 

• Scenario 1: apply default mitigation reductions of 50% for Sheep & Beef and Dairy land 

in each catchment. 

• Scenario 2: Scenario 1 plus convert one half of all Sheep & Beef land in each 

catchment to Exotic Forest 

• Scenario 3: Scenario 1 plus convert one quarter of both Sheep & Beef and Dairy land 

in each catchment to Natural 

We used the land-types and fitted coefficients of Model 10 (Table 4) to provide the ETC 

parameters for the catchment model (Equation 4). We made one modification to the fitted 

coefficients and changed the ETC parameter for the Natural_HighElev land-type to zero. The 

outputs are reported below as both reductions from the current concentration (%) and as 

absolute concentrations (cfu 100 ml-1).  

6.2 Calculations 

The first step in the calculation was to use the model to predict this study’s baseline (i.e., for 

the 5-year period to the end of 2020) E. coli concentration at all sites as: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = ∑ 𝑃𝑖 × 𝐸𝑇𝐶𝑖
⬚𝑚

𝑖=1   Equation 6 

where 𝑃𝑖  is the proportion of catchment area occupied by the ith land-type, 𝐸𝑇𝐶𝑖 is the empirical 

type concentration parameter for the type, m is the number of land-types represented by the 

model, which in this case is 17 (i.e., the 15 defined in Table 4 and ETC parameters equal to 

zero for the Bare and Water land-types). Note that Equation 5 differs from Equation 4 by not 

including the term representing the concentration form of the catchment point source 

contributions (i.e., 𝑃𝑆𝐶). This means that the analyses performed here ignored any point 

source contribution, but these were expected to be small for the reasons set out in Section 

4.1.3. 

We simulated the E. coli concentration for Scenario 1 by applying a default mitigation rate of 

50% to all pastoral land (i.e., to all land-types that had either a Sheep & Beef or Dairy land 

use category) and setting the mitigation rate for all other land uses to zero. The 50% mitigation 

rate is the most likely effectiveness of stream fencing as a mitigation option for reducing E. 

coli concentrations in streams (Muirhead 2019). We note that we have not allowed here for 

any fencing that is already in place during the baseline period. The use of 50% as an estimate 

of effectiveness is therefore probably optimistic relative to the change that is achievable. The 

E. coli concentration for all sites under Scenario 1 was predicted as: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = ∑ 𝑃𝑖 × 𝐸𝑇𝐶𝑖
⬚ ×  (1 − 𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒𝑖)𝑚

𝑖=1   Equation 7 

where 𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒𝑖 is the assumed mitigable proportion of the concentration for the ith 

land-type.  
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For Scenario 2, we converted 50% of all land in the Sheep & Beef land use category to the 

Exotic Forest land use category. Both the Sheep & Beef and Exotic Forest land use categories 

are split into four land-types, based on combinations of elevation and drainage (Table 4). We 

therefore reassigned half the proportion of catchment area in each of the four Sheep & Beef 

land-types to an Exotic Forest land-type with the same elevation and soil categories and 

reduced the proportion of catchment area in each Sheep & Beef land use type by 50%. 

For Scenario 3, we converted 25% of all Sheep & Beef and Dairy land use categories into the 

Natural category. The Natural land use category is split into two land-types, based on elevation 

alone (Table 4). We therefore reassigned one quarter of the proportion of catchment area in 

the two Sheep & Beef High Elevation land-types (i.e., two drainage categories; 

Sheep&Beef_HighElev_PoorlyDrained and Sheep&Beef_HighElev_WellDrained) to Natural-

High Elevation. Similarly, we reassigned one quarter of the proportion of catchment area in 

the two Sheep & Beef Low Elevation land-types (i.e., two drainage categories; 

Sheep&Beef_LowElev_PoorlyDrained and Sheep&Beef_LowElev_WellDrained) to Natural-

Low Elevation. We reassigned one quarter of the proportion of catchment area in all Dairy 

types (only differentiated by Well Drained and Pooly Drained) to Natural-low elevation5. The 

proportion of catchment area in each of the Sheep & Beef and Dairy land-types were reduced 

by 25%. Note that a more general description of how land use changes should be simulated 

when using the empirical catchment E. coli concentration model is provided in Appendix C.  

We predicted the E. coli concentrations for scenario 2 and 3 by changing the proportions of 

land area in the catchment of each water quality station as described above and applying 

Equation 7. Note that this means that Scenario 2 and 3 represent the combination of land use 

changes plus mitigation measures on Sheep & Beef and Dairy land. 

We estimated the change in concentration for each scenario as: 

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛−𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
  Equation 8 

Because we knew the actual (i.e., observed concentration) at each LAWA site, we estimated 

the new predicted concentration for each scenario as: 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 × 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛  Equation 9 

6.3 Results 

Figure 14 shows the results for all three scenarios as predicted reductions of E. coli (from 

current concentration) plotted against the proportion of the catchment occupied by pastoral 

land use (i.e., Sheep & Beef or Dairy). For Scenario 1 the reduction from the baseline E. coli 

concentration increased with increasing proportion of the catchment occupied by pastoral land 

use to reach an approximate mean reduction of around 50% for catchments having high 

occupancy by pastoral land use. This simply reflects the “default” 50% reduction in E. coli 

losses from all pastoral land uses assumed in this scenario. There are sites that have very low 

proportion of catchment area occupied by pastoral land use, but which have reductions of 

50%. This occurs in catchments with very small pastoral area and the remainder being 

occupied by the Natural_HighElev land-type, which has an ETC parameter value of zero. In 

these catchments, the reduction from the pastoral land is 50% and the contribution of the 

remaining land is zero and, therefore, the reduction is 50%. The between-site variation in 

 
5 Note that this makes the assumption that all land in the Dairy land use category is below 350 m ASL, which is generally, but 

not always true.  
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percentage reduction that is achievable under Scenario 1 reflects the variable composition of 

non-pastoral land uses in individual catchments.  

Figure 14 shows that Scenario 2 generally achieves greater reductions than Scenario 1 and 

Scenario 3. The reductions achieved under Scenarios 2 and 3 increase with increasing 

proportion of the catchment occupied by pastoral land use. This is to be expected because 

Scenarios 2 and 3 involve changing fixed proportions of current pastoral land use to Exotic 

Forest and Natural land use categories, respectively, and therefore the overall reductions in 

E. coli concentrations increase with the amount of current pastoral land use. Figure 14 shows 

that although there are generally larger reductions for Scenario 2 compared to Scenario 3, 

there is considerable variation and for some sites this pattern is reversed. This is because 

different catchments comprise different amounts of Sheep & Beef and Dairy and different 

combinations of the underlying ETC parameter values and therefore, the reductions vary.  

  

Figure 14: Outputs of the simulations of the three scenarios. The plot shows the predicted 

reductions for E. coli against proportion of the catchment that is currently in pastoral land use. 

The solid lines are smoothed representations of the mean response (i.e., reduction) versus 

proportion of the catchment in pastoral land use.  
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Figure 15 shows maps of the sites coloured by the predicted E. coli reductions under the three 

scenarios. These maps indicate geographic variation in the extent to which mitigation is 

predicted to reduce E. coli concentrations. For example, for Scenario 1, the reductions in E. 

coli concentration are generally large in the parts of Waikato, Manawatu-Whanganui, 

Taranaki, Canterbury and Southland regions. This is because catchments in these regions 

generally have higher proportions of pastoral land use and therefore have larger areas of 

mitigable land. In contrast, catchments in the West Coast, Tasman and Marlborough regions 

and in parts of the Bay of Plenty and Auckland had lower reductions because their catchments 

tend to have lower proportions of pastoral land use.
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Figure 15: Maps showing outputs of the simulations of the three scenarios. The maps show water quality monitoring stations coloured by the 

predicted reductions for median E. coli concentration. Stations represented by round points have baseline median E. coli concentrations 

<130 cfu 100 ml-1 and those represented by triangles and squares are improved to be <130 cfu 100 ml-1 or remain >130 cfu 100 ml-1 under 

the scenario, respectively.  
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Figure 16 compares current and estimated median concentrations of E. coli for the three 

scenarios. This plot indicates that there are some water quality stations that have very little or 

no change in concentrations under the scenarios. This occurs when stations have little or no 

pastoral land use in their catchments. The plot also indicates that the change in absolute 

concentrations generally increases from scenario 1 to scenario 3.  

Under the scenarios, some water quality stations with current median E. coli concentrations 

exceeding 130 cfu 100 ml-1 will have levels decreased to less than or equal to 130 cfu 100 

ml-1. These stations are below the horizontal and to the right of the vertical grey lines in Figure 

16. The value of 130 cfu 100 ml-1 is the upper threshold for suitability for primary contact (C 

band) as defined by the NPS-FM. For Scenarios 1, 2 and 3, the proportion of stations that are 

predicted to be moved from unsuitable to suitable under the scenarios are 38%, 61% and 39% 

of stations with baseline median E. coli concentrations greater than 130 cfu 100 ml-1, 

respectively. The location of these stations is shown in  

Figure 15. Note that 55% of stations have baseline median E. coli concentrations greater than 

130 cfu 100 ml-1.  

  

Figure 16: Comparison between current and estimated concentrations for the three 

scenarios. The red dashed line is one to one. Site and scenario combinations lying on this 

line are predicted to have no change in E. coli concentrations for the indicated scenario.  



 

 Page 50 of 59 

7 Discussion 

7.1 Empirical catchment models for E. coli 

In this study, we developed an alternative class of empirical catchment model for predicting 

median E. coli concentrations. We were not able to develop a satisfactory empirical E. coli 

yield model.  

The empirical E. coli concentration model has calibrated lumped parameters that, for each 

land-type, represent loss of E. coli from land, transport and attenuation in the drainage 

network, and dilution in the water column. The model provides a simple and easily used tool 

that can be applied at any location within New Zealand. In other words, the empirical model is 

a simple alternative to setting up process-based catchment E. coli models. In addition, the 

empirical model allows the user to estimate the 90% prediction interval as an estimate of the 

imprecision of its predictions. The approach provides a simpler and more transparent method 

for simulating the impacts of land management on median E. coli concentrations than process-

based models, which may be appropriate for at least some applications.  

We have developed a dataset that provides proportions of catchment area occupied by each 

land-type used by the E. coli concentration model for all segments of the DN2.4 (>10 km2). 

These data allow estimates of E. coli concentration to be made at any location in New Zealand 

very easily. In addition, the data can be used to rapidly assess impacts of land use and land 

management scenarios on E. coli concentrations at any location in New Zealand.  

Defining the land-types that were included in the empirical model involved expert judgement 

and was strongly influenced by the work of Muirhead et al. (2023). The definition of the ‘best’ 

empirical model was also based on expert judgement that involved making trade-offs between 

model performance, the proportion of significant coefficients, and optimising for the total 

number of land-types. Future research or applications could refine the approach, potentially 

with more exhaustive exploration of the sets of land-types (typologies, their factors and the 

threshold values used to define the categories), incorporating the observation uncertainties 

into the fitting process, using updated observed water quality datasets, and improving the 

criteria used to define the “best” model based on specific model purpose. 

The main reason we were unable to derive a satisfactory empirical catchment model for 

predicting E. coli loads (as yields) was that there were fewer sites in our fitting datasets. 

Another reason may be that the E. coli yield estimates are themselves very uncertain (Figure 

5) which adds noise to the model response. This outcome emphasises the importance of 

having continuous flow measurement at water quality monitoring stations and more frequent 

or more targeted sampling over the full range of flows (to reduce load estimate uncertainty). 

We note that these requirements are important for the calibration of process-based models, 

as well as for empirical models.  

7.2 Application of the empirical models and limitations 

This study demonstrates the potential application of the empirical E. coli concentration model 

to assessing the potential benefits of land use mitigations, and of land use change on median 

E. coli concentrations. As such, the model is potentially useful to support engagement and 

decision-making processes relating to E. coli target attribute states. However, users need to 

understand the limitations of the empirical model and recognise that the very simplified 

representation of processes means that the model cannot answer some types of questions 

and its predictions are approximations. 
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An important limitation that applies to the empirical model is associated with the national scale 

of the quantile regression models that were used to derive its parameters (i.e., the ETCs). 

Because the water quality station data were limited, we were only able to derive robust ETCs 

for a small number of (17) land-types. This limits the spatial resolution of the empirical model. 

In addition, as the spatial extent of a modelled domain reduces, the specificity of the ETC 

values will diminish because the calibration target was the central tendency (i.e., median 

value6) of all the national water quality stations.  

The ETC parameter for each land-type is a lumped value that represents the loss of E. coli 

from land, transport and attenuation in the drainage network and dilution in the water column. 

The use of lumped parameters to represent all these processes has limitations. First, the 

lumped parameters mean that the empirical model has no spatial discretisation of E. coli 

sources. Therefore, the estimation of the contribution of a land-type to E. coli concentration at 

a location has no consideration of the distance between a source and the location of interest. 

This is a simplification of the real-world situation because it is likely that sources that are close 

to a location of interest are a more important determinant of concentration than those that are 

further away due to die-off (i.e., attenuation) of organisms during transport in the drainage 

system. Second, because attenuation is not explicitly represented and is lumped, the empirical 

model has no spatial discretisation of E. coli attenuation. This is an approximation because 

attenuation is likely to vary spatially. For example, if a location of interest is immediately 

downstream of a lake or reservoir, it is likely that there will be significant attenuation of all E. 

coli lost in the upstream catchment as it passed through the lake. In contrast, if there is 

significant input of E. coli between a lake or reservoir and the location of interest, attenuation 

of this contribution will be less. This is important because, if the proportions of catchment area 

of land-types were the same in the previous two cases, the empirical model would predict the 

same concentration.  

A limitation of using observations of E. coli concentrations from many catchments across New 

Zealand is that there will be differences in the degree to which mitigation measures, such as 

stream fencing, have already been deployed across the fitting dataset. This means that the 

derived ETC parameters represent the ‘average’ of the varying effects of existing mitigation 

across catchments. It also means that the changes in concentrations associated with user-

defined scenarios involve implicit assumptions about the existing level of implementation at 

the site of interest. These limitations contribute to the uncertainty at the site level of both the 

predicted current E. coli concentrations and the changes to those concentrations under land 

use change scenarios.  

We note also that it is understood that river faecal microbial dynamics are strongly influenced 

by both mobilisation of E. coli from land and remobilisation of channel store during storm flows 

(Wilkinson et al. 2011). Our simple empirical model has no representation of the remobilisation 

of E. coli from channel stores and has no representation of the frequency of these 

remobilisation events. For example, two catchments could have the same proportions of 

catchment area in various land-types but have contrasting flow regimes (e.g., high base flows 

and infrequent high flows compared to low base flows and frequent high flows). The difference 

in flow regimes is likely to contribute to differences in median E. coli concentrations between 

the two catchments but this will not be represented by our model. This and the limitations set 

out above are partly why predictions of absolute values made with the model have large 

uncertainties (Figure 10). 

 
6 Note that this is the median of the site median values because the quantile regression model was fitted to the median of the 

site median E. coli concentrations (as well as the 0.05 and 0.95 quantiles). 



 

 Page 52 of 59 

Given the above limitations, the most appropriate application of this class of model is in 

scenario analysis over broad spatial areas (e.g., multiple catchments to regions). In addition, 

appropriate applications are where the objective is not to evaluate absolute concentrations 

resulting from a set of actions, but rather to evaluate relative differences between a baseline 

and scenario. There is greater confidence in the relative difference between a baseline and 

scenario, and between scenarios, than in the absolute values of the predictions themselves. 

We note that the accuracy of these relative differences relies on the assumption that the 

relative differences in the ETC values for different land-types are applicable to the catchment 

of interest. We note that testing the validity of these assumptions was beyond the scope of 

this study but would be a useful direction for future research. 

7.3 Catchment water quality models and simulations are uncertain 

Because models are dependent on the long-term collection of data, the uncertainties 

associated with water quality models in general, and their use to make simulations of the 

impact of land management actions on water quality, cannot be reduced appreciably in the 

short to medium term. However, catchment water quality models will generally need to be 

used to inform decision makers about appropriate responses to water quality issues including 

actions such as limiting resource use, requiring mitigations and land use changes. These 

decisions will ultimately need to be made in the face of considerable uncertainty.  

To some extent the large uncertainties associated with estimates of absolute E. coli 

concentrations are less important when the model is used to assess relative differences 

between two simulations (e.g., between a baseline and a mitigation scenario). In other words, 

when using the model to make simulations, users should focus on the predicted relative 

change in concentration between scenarios than the absolute values of the predictions. This 

is advantageous because there is likely some commonality in the sources of uncertainty 

between scenarios (e.g., because some uncertainty is due to within-land-type variability or the 

lack of representation of spatial variation in attenuation) and this means that the uncertainty 

in the relative change will be less than the absolute values. However, methods for 

understanding and quantifying the uncertainty of these relative differences for both our 

empirically based approach and for process-based catchment models have not been 

developed. Defining and quantifying uncertainties in relative differences between scenarios 

presents a considerable technical challenge that needs further research.   

8 Conclusions 

This study derived a credible set of ETC parameters for an empirical catchment E. coli 

concentration model of the form indicated by Equation 4. We also demonstrated the potential 

application of this model to assessing the potential benefits of land use mitigations, and of the 

impact of land use change on median E. coli concentrations. The model is potentially useful 

to support engagement and decision-making processes relating to E. coli target attribute 

states.  

This model’s ETC parameters were derived using the best currently available information. 

Nevertheless, there is considerable uncertainty associated with the model’s predictions of 

median E. coli concentrations. A strength of the model is that its uncertainty is quantified for 

any prediction as the 90% prediction interval. In contrast, quantification of uncertainty is a 

significant challenge for process-based models and is rarely undertaken. The uncertainty 

reflects the complexity and variability of the processes that control E. coli concentrations in 

catchments. Catchment E. coli modelling would significantly benefit from more collection of 
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data from different land-uses and trials of mitigations, and from research on instream 

attenuation and hydrological processes that impact on the microbial water quality metrics. 

The example simulations carried out using the derived model show that even under the 

substantial actions envisaged by scenarios 2 and 3 (i.e., converting significant areas of 

pastoral land use to Exotic Forest or Natural land use), a large proportion of the water quality 

stations with current median E. coli concentrations exceeding 130 cfu 100 ml-1 were not 

predicted to have concentrations less than 130 cfu 100 ml-1 under the scenarios. This indicates 

that improving water quality to achieve suitability for primary contact (C band) as defined by 

the NPS-FM is a significant challenge.  
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Appendix A Definition of potential typologies for the empirical catchment E. coli concentration models 

Table 5. Typologies and associated sets of land-types included in this study. Land-types are defined by category names linked by an under-score (e.g. 

Dairy_WellDrained). Land use definitions are defined in Table 1. Note that the Bare and Water land use categories were not explicitly included in all 

models and are not listed in the land-types column of this table but are counted in the number of land-types. 

Typology Number 
of land-
types 

Land-types  

1 9 Natural, Dairy, Sheep&Beef, Cropland, Water, Orchard&Vineyard, Urban, Bare, Exotic Forest 

2 12 
Natural_WellDrained, Dairy, Sheep&Beef_WellDrained, Cropland, Water, Orchard&Vineyard, Urban, Bare, ExoticForest_PoorlyDrained, 
Natural_PoorlyDrained, ExoticForest_WellDrained, Sheep&Beef_PoorlyDrained 

3 13 
Natural_WellDrained, Dairy_WellDrained, Sheep&Beef_WellDrained, Cropland, Dairy_PoorlyDrained, Water, Orchard&Vineyard, Urban, 
Bare, ExoticForest_PoorlyDrained, Natural_PoorlyDrained, ExoticForest_WellDrained, Sheep&Beef_PoorlyDrained 

4 12 
Natural_HighElev, Dairy, Sheep&Beef_LowElev, Cropland, Water, Orchard&Vineyard, Urban, Bare, Natural_LowElev, 
ExoticForest_LowElev, ExoticForest_HighElev, Sheep&Beef_HighElev 

5 13 
Natural_HighElev, Dairy_LowElev, Sheep&Beef_LowElev, Cropland, Dairy_HighElev, Water, Orchard&Vineyard, Urban, Bare, 
Natural_LowElev, ExoticForest_LowElev, ExoticForest_HighElev, Sheep&Beef_HighElev 

6 12 
Natural_Warm, Natural_Cold, Dairy, Sheep&Beef_Cold, Cropland, Water, Orchard&Vineyard, Urban, Bare, ExoticForest_Cold, 
ExoticForest_Warm, Sheep&Beef_Warm 

7 13 
Natural_Warm, Natural_Cold, Dairy_Cold, Sheep&Beef_Cold, Cropland, Dairy_Warm, Water, Orchard&Vineyard, Urban, Bare, 
ExoticForest_Cold, ExoticForest_Warm, Sheep&Beef_Warm 

8 15 
Natural_Dry, Natural_Moist, Dairy, Sheep&Beef_Wet, Cropland, Water, Orchard&Vineyard, Urban, Bare, ExoticForest_Moist, 
ExoticForest_Wet, ExoticForest_Dry, Sheep&Beef_Moist, Sheep&Beef_Dry, Natural_Wet 

9 17 
Natural_Dry, Natural_Moist, Dairy_Dry, Sheep&Beef_Wet, Cropland, Water, Orchard&Vineyard, Urban, Bare, ExoticForest_Moist, 
ExoticForest_Wet, ExoticForest_Dry, Dairy_Moist, Sheep&Beef_Moist, Sheep&Beef_Dry, Dairy_Wet, Natural_Wet 

10 17 

Natural_HighElev, Dairy_WellDrained, Sheep&Beef_LowElev_WellDrained, Cropland, Dairy_PoorlyDrained, Water, Orchard&Vineyard, 
Urban, Bare, Natural_LowElev, ExoticForest_LowElev_PoorlyDrained, ExoticForest_HighElev_PoorlyDrained, 
Sheep&Beef_HighElev_WellDrained, ExoticForest_HighElev_WellDrained, Sheep&Beef_LowElev_PoorlyDrained, 
Sheep&Beef_HighElev_PoorlyDrained, ExoticForest_LowElev_WellDrained 

11 17 

Natural_HighElev, Dairy_Dry, Sheep&Beef_LowElev_Wet, Cropland, Water, Orchard&Vineyard, Urban, Bare, Natural_LowElev, 
ExoticForest_LowElev_Wet, ExoticForest_HighElev_Dry, Dairy_Wet, Sheep&Beef_HighElev_Wet, Sheep&Beef_HighElev_Dry, 
ExoticForest_LowElev_Dry, Sheep&Beef_LowElev_Dry, ExoticForest_HighElev_Wet 

12 21 

Natural_HighElev_WellDrained, Dairy_LowElev_WellDrained, Sheep&Beef_LowElev_WellDrained, Cropland, 
Dairy_HighElev_PoorlyDrained, Water, Orchard&Vineyard, Urban, Bare, Natural_LowElev_WellDrained, 
ExoticForest_LowElev_PoorlyDrained, Dairy_LowElev_PoorlyDrained, ExoticForest_HighElev_PoorlyDrained, 
Sheep&Beef_HighElev_WellDrained, Natural_HighElev_PoorlyDrained, Dairy_HighElev_WellDrained, 
ExoticForest_HighElev_WellDrained, Natural_LowElev_PoorlyDrained, Sheep&Beef_LowElev_PoorlyDrained, 
Sheep&Beef_HighElev_PoorlyDrained, ExoticForest_LowElev_WellDrained 
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Typology Number 
of land-
types 

Land-types  

13 21 

Natural_Warm_WellDrained, Natural_Cold_WellDrained, Dairy_Cold_WellDrained, Sheep&Beef_Cold_WellDrained, Cropland, 
Dairy_Warm_PoorlyDrained, Water, Orchard&Vineyard, Dairy_Warm_WellDrained, Urban, Bare, ExoticForest_Cold_PoorlyDrained, 
ExoticForest_Warm_PoorlyDrained, Sheep&Beef_Warm_WellDrained, Dairy_Cold_PoorlyDrained, Natural_Warm_PoorlyDrained, 
ExoticForest_Cold_WellDrained, Natural_Cold_PoorlyDrained, Sheep&Beef_Cold_PoorlyDrained, Sheep&Beef_Warm_PoorlyDrained, 
ExoticForest_Warm_WellDrained 

14 23 

Natural_HighElev_WellDrained, Dairy_WellDrained, Sheep&Beef_LowElev_WellDrained_Wet, Cropland, Dairy_PoorlyDrained, Water, 
Orchard&Vineyard, Urban, Bare, Natural_LowElev_WellDrained, ExoticForest_LowElev_PoorlyDrained, 
ExoticForest_HighElev_PoorlyDrained, Sheep&Beef_HighElev_WellDrained_Wet, Sheep&Beef_HighElev_WellDrained_Dry, 
Sheep&Beef_LowElev_WellDrained_Dry, Natural_HighElev_PoorlyDrained, ExoticForest_HighElev_WellDrained, 
Natural_LowElev_PoorlyDrained, Sheep&Beef_LowElev_PoorlyDrained_Dry, Sheep&Beef_HighElev_PoorlyDrained_Wet, 
Sheep&Beef_LowElev_PoorlyDrained_Wet, Sheep&Beef_HighElev_PoorlyDrained_Dry, ExoticForest_LowElev_WellDrained 

15 25 

Natural_HighElev_WellDrained, Dairy_LowElev_WellDrained, Sheep&Beef_LowElev_WellDrained_Wet, Cropland, 
Dairy_HighElev_PoorlyDrained, Water, Orchard&Vineyard, Urban, Bare, Natural_LowElev_WellDrained, 
ExoticForest_LowElev_PoorlyDrained, Dairy_LowElev_PoorlyDrained, ExoticForest_HighElev_PoorlyDrained, 
Sheep&Beef_HighElev_WellDrained_Wet, Sheep&Beef_HighElev_WellDrained_Dry, Sheep&Beef_LowElev_WellDrained_Dry, 
Natural_HighElev_PoorlyDrained, Dairy_HighElev_WellDrained, ExoticForest_HighElev_WellDrained, Natural_LowElev_PoorlyDrained, 
Sheep&Beef_LowElev_PoorlyDrained_Dry, Sheep&Beef_HighElev_PoorlyDrained_Wet, Sheep&Beef_LowElev_PoorlyDrained_Wet, 
Sheep&Beef_HighElev_PoorlyDrained_Dry, ExoticForest_LowElev_WellDrained 

16 29 

Natural_HighElev_WellDrained_Dry, Natural_HighElev_WellDrained_Wet, Dairy_LowElev_WellDrained, 
Sheep&Beef_LowElev_WellDrained_Wet, Cropland, Dairy_HighElev_PoorlyDrained, Water, Orchard&Vineyard, Urban, Bare, 
Natural_LowElev_WellDrained_Wet, ExoticForest_LowElev_PoorlyDrained, Dairy_LowElev_PoorlyDrained, 
ExoticForest_HighElev_PoorlyDrained, Sheep&Beef_HighElev_WellDrained_Wet, Sheep&Beef_HighElev_WellDrained_Dry, 
Sheep&Beef_LowElev_WellDrained_Dry, Natural_HighElev_PoorlyDrained_Wet, Dairy_HighElev_WellDrained, 
ExoticForest_HighElev_WellDrained, Natural_LowElev_PoorlyDrained_Wet, Sheep&Beef_LowElev_PoorlyDrained_Dry, 
Natural_LowElev_PoorlyDrained_Dry, Sheep&Beef_HighElev_PoorlyDrained_Wet, Natural_HighElev_PoorlyDrained_Dry, 
Natural_LowElev_WellDrained_Dry, Sheep&Beef_LowElev_PoorlyDrained_Wet, Sheep&Beef_HighElev_PoorlyDrained_Dry, 
ExoticForest_LowElev_WellDrained 

17 33 

Natural_HighElev_WellDrained_Dry, Natural_HighElev_WellDrained_Wet, Dairy_LowElev_WellDrained, 
Sheep&Beef_LowElev_WellDrained_Wet, Cropland, Dairy_HighElev_PoorlyDrained, Water, Orchard&Vineyard, Urban, Bare, 
Natural_LowElev_WellDrained_Wet, ExoticForest_LowElev_PoorlyDrained_Wet, Dairy_LowElev_PoorlyDrained, 
ExoticForest_HighElev_PoorlyDrained_Dry, Sheep&Beef_HighElev_WellDrained_Wet, Sheep&Beef_HighElev_WellDrained_Dry, 
ExoticForest_LowElev_PoorlyDrained_Dry, Sheep&Beef_LowElev_WellDrained_Dry, Natural_HighElev_PoorlyDrained_Wet, 
ExoticForest_HighElev_PoorlyDrained_Wet, Dairy_HighElev_WellDrained, ExoticForest_HighElev_WellDrained_Dry, 
Natural_LowElev_PoorlyDrained_Wet, Sheep&Beef_LowElev_PoorlyDrained_Dry, Natural_LowElev_PoorlyDrained_Dry, 
Sheep&Beef_HighElev_PoorlyDrained_Wet, ExoticForest_HighElev_WellDrained_Wet, Natural_HighElev_PoorlyDrained_Dry, 
Natural_LowElev_WellDrained_Dry, Sheep&Beef_LowElev_PoorlyDrained_Wet, Sheep&Beef_HighElev_PoorlyDrained_Dry, 
ExoticForest_LowElev_WellDrained_Wet, ExoticForest_LowElev_WellDrained_Dry 
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Appendix B Fitted coefficients for the best empirical E. coli 
concentration model 

Table 6. Best E. coli concentration model (Model 10) fitted coefficients. Coefficients for each 

quantile, their standard errors (St Error) and p-values. 

Land-type Quantile Coefficient St Error P value 

Cropland 0.05 112.5 48.2 0.020 

Dairy_PoorlyDrained 0.05 118.5 35.5 0.001 

Dairy_WellDrained 0.05 104.1 48.5 0.032 

ExoticForest_HighElev_PoorlyDrained 0.05 21.4 51.9 0.681 

ExoticForest_HighElev_WellDrained 0.05 -38.1 33.8 0.259 

ExoticForest_LowElev_PoorlyDrained 0.05 37.2 34.1 0.275 

ExoticForest_LowElev_WellDrained 0.05 40.9 32.1 0.203 

Natural_HighElev 0.05 2.8 2.5 0.255 

Natural_LowElev 0.05 11.0 7.3 0.133 

OrchardVineyard 0.05 60.9 70.5 0.387 

Sheep&Beef_HighElev_PoorlyDrained 0.05 13.0 12.3 0.292 

Sheep&Beef_HighElev_WellDrained 0.05 1.8 8.4 0.835 

Sheep&Beef_LowElev_PoorlyDrained 0.05 47.6 27.4 0.082 

Sheep&Beef_LowElev_WellDrained 0.05 88.8 50.4 0.078 

Urban 0.05 114.8 63.1 0.069 

Cropland 0.5 158.8 116.2 0.172 

Dairy_PoorlyDrained 0.5 381.1 173.9 0.029 

Dairy_WellDrained 0.5 391.1 67.3 0.000 

ExoticForest_HighElev_PoorlyDrained 0.5 24.8 95.7 0.795 

ExoticForest_HighElev_WellDrained 0.5 16.4 16.8 0.331 

ExoticForest_LowElev_PoorlyDrained 0.5 127.8 54.2 0.019 

ExoticForest_LowElev_WellDrained 0.5 7.6 30.8 0.805 

Natural_HighElev 0.5 -1.0 4.9 0.831 

Natural_LowElev 0.5 146.6 29.9 0.000 

OrchardVineyard 0.5 310.2 194.1 0.110 

Sheep&Beef_HighElev_PoorlyDrained 0.5 99.6 36.2 0.006 

Sheep&Beef_HighElev_WellDrained 0.5 43.5 16.1 0.007 

Sheep&Beef_LowElev_PoorlyDrained 0.5 349.2 52.5 0.000 

Sheep&Beef_LowElev_WellDrained 0.5 182.8 49.2 0.000 

Urban 0.5 754.4 149.3 0.000 

Cropland 0.95 476.6 569.9 0.403 

Dairy_PoorlyDrained 0.95 1986.8 553.5 0.000 

Dairy_WellDrained 0.95 987.2 350.2 0.005 

ExoticForest_HighElev_PoorlyDrained 0.95 -45.7 412.8 0.912 

ExoticForest_HighElev_WellDrained 0.95 138.8 126.2 0.272 

ExoticForest_LowElev_PoorlyDrained 0.95 204.9 826.2 0.804 

ExoticForest_LowElev_WellDrained 0.95 -103.7 105.1 0.324 

Natural_HighElev 0.95 17.1 19.5 0.382 

Natural_LowElev 0.95 475.4 190.8 0.013 

OrchardVineyard 0.95 240.1 2280.1 0.916 

Sheep&Beef_HighElev_PoorlyDrained 0.95 138.1 104.5 0.187 

Sheep&Beef_HighElev_WellDrained 0.95 363.1 80.1 0.000 

Sheep&Beef_LowElev_PoorlyDrained 0.95 864.8 210.0 0.000 

Sheep&Beef_LowElev_WellDrained 0.95 723.9 275.6 0.009 

Urban 0.95 2815.4 428.1 0.000 
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Appendix C Simulating changes in land use using the model 

The typology used for the best concentration model (Model 10, Table 2) defines land-types 

based on nine land use categories, and two environmental factors: elevation and drainage, 

which are both subdivided into two categories. The ETC parameters of the concentration 

model merge some of these land-types. For example, the land use categories Cropland, 

Orchard & Vineyard and Urban are not subdivided by the environmental factors (i.e., both the 

elevation and the drainage categories are merged) and Natural is only subdivided by elevation 

(i.e., the drainage categories are merged, see Table 4). However, we use the full typology to 

implement a scenario that involves simulating a land use change as described below. 

Land use change is specified as a percentage change (dLU) from one land use to another. 

For example, 50% of Sheep & Beef land in each catchment is changed to Exotic Forest in 

scenario 2 in this study.   

Land use change scenarios involve a reallocation of the proportion of area occupied by 

different land use categories (i.e., land under Sheep & Beef land use changed to land under 

Exotic Forest use). Because the drainage and elevation components of the typology are 

environmental factors, these do not change under the scenario. However, the transfer of land 

uses can only occur between land-types that have the same environmental categories. 

Therefore, the land use change scenario needs to be simulated in a way in which the 

unchanging nature of the environmental categories is maintained. This is achieved by 

subdividing the catchment by the “full typology”. For Model 10 the full typology is defined by 

nine land use categories all of which are further subdivided by the two environmental factors, 

resulting in four land-types per land use category. The change in land use is then specified for 

each land-type represented by the full typology in the catchment.  

Consider the scenario 2 example where land use is changed from Sheep & Beef to Exotic 

Forest. The new proportion of catchment area (P) of Exotic Forest for the scenario, is given 

by: 

𝑃𝐸𝐹,𝑖,𝑗
𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = 𝑃𝐸𝐹,𝑖,𝑗

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
+ 𝑃𝑆𝐵,𝑖,𝑗

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
× 𝑑𝐿𝑈  Equation 10 

where 𝑃𝐸𝐹,𝑖,𝑗
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

 is the original proportion of the catchment occupied by Exotic Forest for the ith 

and jth elevation and drainage categories, 𝑃𝑆𝐵,𝑖,𝑗
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

 is the original proportion of the catchment 

occupied by Sheep & Beef for the ith and jth elevation and drainage categories and 𝑃𝐸𝐹,𝑖,𝑗
𝑆𝑐  is the 

new proportion of the catchment occupied by Exotic Forest for the ith and jth elevation and 

drainage categories for the scenario. The new proportion of catchment area (P) of Sheep & 

Beef for the scenario, is given by: 

𝑃𝑆𝐵,𝑖,𝑗
𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = 𝑃𝑆𝐵,𝑖,𝑗

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
×  (1 − 𝑑𝐿𝑈)  Equation 11 

For all unchanged land uses, we set 𝑃𝑥,𝑖,𝑗
𝑆𝑐 = 𝑃𝑥,𝑖,𝑗

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
.  The full typology proportions of area 

are then summed over each of the Model 10 land use categories where the Model 10 types 

are coarser than the full typology (e.g., the proportion of the Model 10 land-type “Natural Low 

Elevation” is 𝑃𝑁,𝑙𝑜𝑤,𝑤𝑒𝑙𝑙
𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 + 𝑃𝑁,𝑙𝑜𝑤,𝑝𝑜𝑜𝑟

𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 ). Finally, the scenario concentration can be calculated 

using Equation 7. 

 


