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Glossary 

Term Definition 

Attenuation coefficient The proportion of the export load that is lost between 

the sources and the instream observation point 

CAEC Catchment average export coefficient. Area weighted 

average of export coefficients over a catchment (kg ha-

1 yr-1) 

Catchment average export loads Area weighted average of export coefficients over a 

catchment multiplied by catchment area (t yr-1) 

DN2.4 Digital river network, version 2.4 

Empirical catchment water quality 

model 

Shortened to ‘empirical model’ in the report. These 

models use a purely empirical (statistical) approach to 

predict instream load or concentration at point in the 

drainage network based on the proportion of upstream 

catchment occupied by various Types defined by a 

typology. There is no attempt to represent either 

contaminant loss from land or attenuation so the 

predictions are purely data driven. 

ETC Empirical Type concentration. The expected instream 

concentration (mg m-3), realised at a point in the 

drainage network (post attenuation), that is generated 

by diffuse losses associated with a specific Type that is 

defined by a typology. These values were estimated by 

fitting quantile regression models to median 

concentrations calculated for water quality stations. 

ETY Empirical Type yield. The expected annual load per unit 

area (kg ha-1 yr-1), realised at a point in the drainage 

network (post attenuation), that is generated by diffuse 

losses associated with a specific Type that is defined 

by a typology. These values were estimated by fitting 

quantile regression models to annual loads calculated 

for water quality stations.  

Export coefficient Rates of diffuse nutrient loss from land (kg ha-1 yr-1) to 

streams. 

Factor Environmental variables that are used to define Types 

in typologies including land use/cover, climate (e.g., 

annual rainfall) and topography (e.g., land slope).   

Instream load In this study, the in-river load calculated for a water 

quality site from infrequent (e.g., monthly) observations 

of concentration and daily flow (t y-1). 

Instream yield Instream load standardised by (divided by) catchment 

area (kg ha yr-1). 
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Term Definition 

Land use Categorical description of land use. In this study a total 

of nine categories were used that include categories 

that, strictly speaking, are descriptions land cover (i.e., 

“Natural”, “Bare” and “Water”). 

OLS Ordinary least squares regression. 

Process-based catchment water 

quality models 

Models that represent two separate processes: 

contaminant loss from land and attenuation to produce 

a prediction of the instream load or concentration at 

downstream points in the drainage network. Examples 

that are discussed in this report are CLUES and 

SCAMP. 

Type A Type (i.e., a class of land) defined by a typology.  

Typology A system of Types that is used to classify and group 

land areas that are alike in terms of one or more 

characteristics of interest (e.g., nutrient loss rates, 

economic returns, response to management 

actions/mitigations). In this study, land areas belonging 

to Types defined by several typologies are considered 

be alike with respect to their diffuse source nutrient loss 

rates. These typologies are defined by subdivision of 

several factors into categories. The factors include land 

use or cover (sub-divided into categories such as dairy 

farms, native forest, urban) and environmental factors 

including soil moisture (sub-divided into categories 

such as wet, dry), land slope (sub-divided into 

categories such as flat, steep). 
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Abstract 

Catchment nutrient (Nitrogen (N) and phosphorus (P)) models are integral to implementing the 

National Policy Statement – Freshwater Management (NPS-FM). Models are used to predict 

the N and P loads or concentrations at points in the drainage network under both existing 

catchment conditions and some possible future set of conditions associated with changed land 

use or management. 

Analyses associated with NPS-FM implementation commonly use a class of catchment 

nutrient models that we call ‘process-based’ models. Process-based models explicitly 

represent the processes of contaminant loss in the catchment (source losses), transport to 

downstream receiving environments, and attenuation (i.e., reduction in loads between the point 

of discharge and downstream receiving environments by natural processes).  

This study investigated how parameters representing diffuse source losses and attenuation in 

process-based catchment nutrient models contribute to the overall uncertainty of model 

predictions. A significant challenge in catchment nutrient modelling is robust quantification of 

uncertainty. Two major sources of uncertainty in process-based catchment nutrient models are 

quantifying the loss of N and P from land (referred to as diffuse source losses) and attenuation.  

To assess diffuse source losses, we used three existing typologies describing variation of land 

use/cover, soil moisture and topography. These typologies are associated with lookup tables 

of N and P export coefficients (loss rates as mass per unit area and time; kg ha-1 yr-1). These 

export coefficients are generally derived from other models such as OVERSEER. The 

typologies and lookup tables are commonly used to parameterise diffuse source losses in 

catchment models. The contributions of the uncertainties of the export coefficients associated 

with these typologies to the overall uncertainty of catchment nutrient models have not been 

quantified. Attenuation parameters are commonly calibrated by reconciling estimates of total 

source losses in catchments with instream TN and TP loads calculated from monitoring data. 

Loads calculated from monitoring data are uncertain. However, the impact of this uncertainty 

on the uncertainty of attenuation parameters has not been quantified.  

This study also developed and demonstrated a new class of purely empirical catchment 

models (‘empirical models'). This class of model offers some advantages in terms of 

transparency, ease of implementation, and defensibility as well as more easily estimated 

model uncertainty.  

The study found that there were significant differences in overall diffuse source losses between 

the existing typologies. For TN, the minimum between-typology difference in diffuse source 

losses at the catchment scale was 4 kg ha-1 yr-1. For a typical catchment, this represents a 

characteristic between-typology difference of at least 33%. For TP, the between-typology 

difference in diffuse source losses was 0.4 kg ha-1 yr-1, which for a typical catchment represents 

a characteristic difference of least 66%. These quantifications provide useful information for 

making first order estimates of the uncertainty of process-based catchment nutrient models. 

However, it was beyond the scope of this study to identify which set of export coefficients are 

closest to the truth. 

Attenuation coefficients estimated from source loads derived from export coefficients and 

calculated instream yields had large uncertainties. Across the three typologies and 

approximately 330 water quality stations with calculated instream yields, 50% of attenuation 

coefficients had confidence interval widths of 0.18 or larger, 25% had widths of 0.3 or larger 

and 10% had widths of 0.47 or larger. These represent approximately 20%, 30% and 50% of 

the physically possible range of an attenuation coefficient (i.e., 0 to 1). These quantifications 

indicate that attenuation parameter uncertainties make considerable contributions to the 
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overall uncertainty of process-based catchment nutrient models. In addition, for TN and TP, 

approximately 20% and 30% of instream yields calculated for water quality stations were 

greater than the estimated catchment source loss. This means the estimated attenuation 

coefficients were negative, which is not physically possible. This is evidence that some, or all, 

of the export coefficients associated with the three typologies are underestimated in some 

situations. 

The study derived satisfactory empirical models that can be used to predict TN concentrations 

(as median values mg TN m-3) and yields (kg TN ha-1 yr-1) as a function of the proportions of 

the catchment area occupied by 17 and 13 Types defined by specifically developed typologies, 

respectively. The empirical models for TN concentrations and yields avoid the need to use 

uncertain export coefficients and to calibrate attenuation parameters. In addition, the empirical 

models allow the user to estimate the 90% prediction interval as an estimate of the uncertainty 

of the empirical model predictions for any catchment.  

The empirical models for TP were not successful, and we do not recommend their use at this 

stage. 

The empirical models provide a simple and fast approach to developing catchment nitrogen 

models, at any location in New Zealand. These models are likely to be suitable for at least 

some assessments of land use and land management impacts.  

The empirical models were calibrated to a limited and national dataset, which means there are 

two general limitations that apply to their use. First, when these models are used at smaller 

than national scales (e.g., individual catchments), the parameters will be potentially biased 

(i.e., not represent the conditions associated with the smaller model domain). Second, the 

number of types that could be represented by the models was limited due to the size of the 

dataset. This means they have only coarse spatial resolution of landscape factors that are 

associated with variation in diffuse source N loss.  



 

 Page xii  

Executive Summary 

Introduction 

Catchment nutrient (Nitrogen (N) and phosphorus (P)) models are integral to implementing the 

National Policy Statement – Freshwater Management (NPS-FM). Analyses associated with 

NPS-FM implementation commonly use a class of catchment nutrient models that we call 

process-based models. Process-based models explicitly represent the processes of 

contaminant loss in the catchment (source losses), transport to downstream receiving 

environments, and attenuation (i.e., reduction in loads between the point of discharge and 

downstream receiving environments by natural processes). Process-based models are used 

to predict N and P loads or concentration at points in the drainage network under both existing 

catchment conditions and some possible future set of conditions associated with change land 

use or management.  

Setting up process-based catchment nutrient models involves quantifying two types of 

parameters: (1) representing rates of N and P loss in the catchment and (2) representing rates 

of attenuation. Typically, the parameters representing N and P loss rates from land are referred 

to as “diffuse source losses”. The parameters representing attenuation are typically calibrated 

by reconciling the estimated total source losses in catchments with the instream loads 

observed at water quality monitoring stations. Because many of the impacts of relate to nutrient 

concentrations, an additional step is often required to translate predicted loads into 

concentrations.  

A significant challenge in catchment nutrient modelling is robust accounting and reporting of 

uncertainty. Two major sources of uncertainty are the diffuse source losses and the calculated 

instream loads, which both contribute to uncertainty of the calibrated attenuation parameters. 

Combining all sources of uncertainty to fully characterise catchment model uncertainty or to 

estimate the uncertainty of attenuation parameters is difficult and rarely undertaken. However, 

failing to quantify and report uncertainties can lead to overconfidence in the evidence produced 

by catchment modelling and limits the ability to make risk management-based decisions. 

This study had three aims. The first two aims are tractable steps toward quantifying 

components of the uncertainty associated with process-based models: (1) assess the level of 

agreement between three existing datasets that are used to quantify diffuse source losses (i.e., 

contaminant losses from land) that are currently used to parameterise process-based models, 

(2) assess the impact of the uncertainty associated with diffuse source losses and instream 

loads on the uncertainty of attenuation parameter estimates. Quantification of these 

uncertainties would provide useful information for making first order estimates of the 

uncertainty of process-based models. The third aim was to investigate the feasibility of fully 

empirical catchment models as an alternative to process-based models. This class of model 

offers some advantages in terms of transparency, ease of implementation, and defensibility as 

well as more easily estimated model uncertainty. 

Use of land typologies in catchment modelling 

In the context of catchment nutrient modelling in New Zealand, land typologies (hereafter, 

‘typologies’) are often used to represent diffuse source losses in catchment nutrient models. 

Typologies discriminate landscape-scale variation of the factors that impact diffuse source 

nutrient loss rates including land use/cover, climate, topography, and soil. Variation in these 

factors is usually delineated by categorical subdivision (e.g., land uses/covers such as Dairy, 

Native forest, Urban), climate (e.g., Wet, Dry), and topography (e.g., Steep, Flat). Types are 

defined by specific combinations of these categories (e.g., Dairy/Wet/Flat). Each Type in a 
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typology is then associated with an ‘export coefficient’, which is an estimated average diffuse 

source loss rate that is recorded in a ‘lookup table’. The export coefficients are used as the 

parameters representing diffuse source losses in process-based models. The values for the 

export coefficient associated with each Type are generally derived from published information 

(such as compilations of measured losses from catchments with a homogenous land use) or 

mechanistic models. Modelled quantification of export coefficients for Types representing 

agricultural land in catchment modelling studies in New Zealand have typically relied on the 

farm-scale OVERSEER model (AgResearch 2016).  

The use of typologies and export coefficients simplifies setting up catchment nutrient models 

by providing one of the sets of model parameters (i.e., diffuse source loss rates). The use of 

an export coefficient for each Type is justifiable on the basis that the variation within each Type 

is “averaged out” at the scale of catchments. In this study, we examined three existing 

typologies and associated look-up tables of export coefficients that have been used in 

catchment modelling in New Zealand, which are herein referred to as: ‘Monaghan’ (Monaghan 

et al. 2021); ‘Srinivasan’ (Srinivasan et al. 2021); and ‘LWP/Bright’ (Bright et al. 2018). 

Data and methods 

We calculated median concentrations and instream loads of TN and TP from records of mainly 

monthly concentration and daily mean flow using a national dataset of water quality monitoring 

station data. Median concentrations were derived for 783 (TN) and 763 (TP) sites. Mean 

annual loads and their uncertainties were calculated for 315 sites for TN and TP. For many of 

the analyses, the instream loads were expressed as yields by dividing by the area of the 

upstream catchment (kg ha-1 yr-1). 

We calculated the catchment average export coefficient (CAEC) to represent the total diffuse 

source loss of TN and TP from the catchments of all segments of the national digital river 

network (DN2.4), which included the catchments of all water quality monitoring stations. The 

CAEC was calculated for each typology in three steps. First, the area occupied by each Type 

in a catchment is multiplied by the corresponding export coefficient. Second, these values are 

then summed to obtain the catchment diffuse source load. Third, the CAEC is the catchment 

diffuse source load divided by the catchment area. Because the CAEC is standardised by 

catchment area, it allows estimates of diffuse source losses to be compared between 

catchments.  

We compared estimates of CAEC values between the three typologies. The agreement of the 

between-typology CAEC values was quantified by R2, root mean squared deviation (RMSD, 

the characteristic difference between two typologies) and bias (the mean difference between 

two typologies).  

We also compared estimates of CAEC values for each typology to instream yields for TN and 

TP. We expected that CAEC values would be larger than instream yields- due to attenuation. 

We also calculated attenuation coefficients from CAEC values and instream yields and then 

estimated the uncertainty of these coefficients based on the uncertainty of the calculated 

instream yields. We expected attenuation coefficient values to be between zero and one, lower 

values indicating greater attenuation and vice versa. Negative attenuation coefficients are not 

physically possible (i.e., CAEC values are less than observed instream yields) and we 

considered this to be evidence that the diffuse source inputs were underestimated. 

We also attempted to derive purely empirical catchment models (hereafter, ‘empirical models’) 

directly from observed instream yields or concentrations. These models use specifically 

developed typologies to discretise landscape-scale variability in diffuse source nutrient losses. 

Empirical models for either yields or concentrations have only one parameter for each Type 
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defined by the typology that we refer to as empirical Type yield (ETY) or empirical Type 

concentration (ETC). An ETY is the expected annual load of nutrient per unit area, realised at 

a point in the drainage network (post attenuation), generated by diffuse losses associated with 

a specific Type. ETYs have the same measurement units as export coefficients (kg ha-1 yr-1), 

however, all other things being equal, ETYs are less than export coefficients because the 

former include attenuation. An ETC is the concentration of nutrient (units mg m-3) realised at a 

point in the drainage network (post attenuation), generated by diffuse losses associated with 

a specific Type.  

Comparison of export coefficients between typologies and to calculated 

instream yields 

For the catchments of each water quality monitoring station, CAECs for TN estimated using 

the three typologies were highly correlated. The CAECs for LWP/Bright and Monaghan had an 

R2 of 0.84 (correlation between typologies) and minimal bias (2%). However, the characteristic 

difference in CAEC between these two typologies, as quantified by RMSD, was  

4.1 kg ha-1 yr-1. Monaghan and Srinivasan had an R2 of 0.86 and an RMSD of 5.5 kg ha-1 yr-1. 

LWP/Bright and Srinivasan had an R2 of 0.77 and an RMSD of 5 kg ha-1 yr-1. For TN the CAECs 

produced by Srinivasan were systematically lower than those of LWP/Bright and Monaghan 

as quantified by biases of 26% and 22%, respectively.  

Because the LWP/Bright typology is not associated with export coefficients for TP, CAECs for 

TP were only compared between Monaghan and Srinivasan. The CAECs for TP for these two 

typologies had an R2 of 0.34, an RMSD of 0.4 kg ha-1 yr-1 and a bias of 15% (i.e., Srinivasan 

was systematically lower than Monaghan).  

For TN, CAECs for 20 – 21% of the water quality station catchments estimated by all three 

typologies were less than the calculated instream yields. This means the estimated attenuation 

coefficients were negative. When uncertainties associated with the calculated instream TN 

loads were considered, attenuation coefficients for between 9% and 21% of water quality 

monitoring stations were negative with 90% confidence intervals that did not include zero. This 

suggests that the export coefficients for some or all the Types within all typologies under-

estimate diffuse source TN losses for some locations. There was no obvious geographic 

pattern in water quality stations with negative attenuation coefficients for TN. However, there 

was evidence that TN export coefficients for Forestry and Natural landcover/use categories 

are too low.  

For TP, CAECs for 30% and 35% of the water quality station catchments derived from 

Monaghan and Srinivasan, respectively, were less than the calculated instream loads 

(meaning estimated attenuation coefficients were negative). When uncertainties associated 

with the calculated instream TP loads were considered, attenuation coefficients for between 

12% and 19% of water quality monitoring stations were negative with 90% confidence intervals 

that did not include zero. This suggests that the TP export coefficients for some or all of the 

Types within the Monaghan and Srinivasan typologies under-estimate diffuse source TP 

losses for some locations. There was no obvious geographic pattern in water quality stations 

with negative attenuation coefficients for TP. There was no evidence that TP export coefficients 

were systematically too low for any particular landcover/use categories. 

The calculated instream yields for the water quality stations had large uncertainties that 

contribute uncertainty to estimates of catchment attenuation. For TN attenuation, the widths of 

confidence intervals for 50% of water quality stations were 0.18 or larger, 25% had widths 0.3 

or larger, and 10% had widths of 0.47 or larger. These represent approximately 20%, 30% and 

50% of the physically possible range of an attenuation coefficient (i.e., 0 to 1). In general, 
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calculated instream load uncertainties and attenuation coefficients for TP were larger than for 

TN. Therefore, uncertainties associated with calculated instream loads represent considerable 

contributions to the uncertainty of process-based catchment nutrient models. 

Empirical models 

We derived satisfactory empirical models that can be used to predict TN concentrations (as 

median values mg TN m-3) and yields (kg TN ha-1 yr-1) as a function of the proportions of the 

upstream catchment occupied by 17 and 13 Types (see Table A and B), respectively. These 

models are expressed mathematically as: 

𝑌 =  𝐸𝑇𝑌1𝑃1 +  𝐸𝑇𝑌2𝑃2 +  𝐸𝑇𝑌3𝑃3 + ⋯ 𝐸𝑇𝑌𝑚𝑃𝑚 + 𝑃𝑆𝑌 

𝐶 =  𝐸𝑇𝐶1𝑃1 +  𝐸𝑇𝐶2𝑃2 + 𝐸𝑇𝐶3𝑃3 + ⋯ 𝐸𝑇𝐶𝑚𝑃𝑚 + 𝑃𝑆𝐶 

where, Y is the yield (kg ha-1 yr-1) and C the concentration (mg m-3) at the evaluation point, and 

PSY and PSC are the yields or concentrations associated with s  point sources, 𝑃1, 𝑃2, 𝑃3, … 𝑃𝑚 

are the proportions of catchment area occupied by each Type in the upstream catchment, and 

𝐸𝑇𝑌1, 𝐸𝑇𝑌2, 𝐸𝑇𝑌3 … 𝐸𝑇𝑌𝑚 and 𝐸𝑇𝐶1, 𝐸𝑇𝐶2, 𝐸𝑇𝐶3 … 𝐸𝑇𝐶𝑚 are the empirically derived parameters 

for yields and concentrations respectively. 

Predictions of TN concentrations and yields, and the lower and upper bounds of the 90% 

prediction interval, can be made for any catchment in New Zealand with catchment area >10 

km2 using the above equations and parameters (ETY and ETC) shown in Tables A and B. The 

empirical models can also be used to simulate effects of land use change or management 

actions on TN concentrations and yields by changing the proportion of catchment occupied by 

particular Types and by applying appropriate changes to the model parameters.  
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Table A. ETC parameters for the empirical TN concentration model for each of the 17 Types 

represented by the model. The values can be interpreted as the contribution of each Type to 

the best estimate, upper and lower bounds for the 90% prediction intervals of TN concentration 

(mg m-3). 

Type Best estimate 
Prediction interval 

lower bound 
Prediction interval 

upper bound 

Bare 0 0 0 

Cropland 4464 759 22771 

Dairy_Dry 6130 1856 5636 

Dairy_Irrigated 6311 1422 13496 

Dairy_Moist 2513 1580 4124 

Dairy_Wet 1170 503 1338 

Forestry_Dry 1272 402 3290 

Forestry_Wet 237 154 771 

Natural_Dry 110 -71 334 

Natual_Wet 46 -4 111 

OrchardVineyard 1102 318 11728 

SheepBeef_Dry_Flat 314 31 4352 

SheepBeef_Dry_Hill 183 86 232 

SheepBeef_Wet_Flat 1193 526 4226 

SheepBeef_Wet_Hill 477 143 1126 

Urban 1368 584 1388 

Water 0 0 0 

Table B. ETY parameters for the empirical TN yield model for each of the 13 Types represented 

by the model. The values can be interpreted as the contribution of each Type to the best 

estimate, upper and lower bounds for the 90% prediction intervals of TN yield (kg ha-1 yr-1). 

Type Best estimate 
Prediction interval 

lower bound 
Prediction interval 

upper bound 

Bare 0 0 0 

Cropland 4.9 4 84.9 

Dairy_Dry 28.5 10.2 41.5 

Dairy_Irrigated 29.6 6.6 65.4 

Dairy_Moist 17 15.9 47 

Dairy_Wet 37.5 31.3 64.1 

Forestry 8.5 4.4 27 

Natural 2.4 1.4 6.6 

OrchardVineyard 18.6 8.7 -45.8 

SheepBeef_Flat 8.3 0.4 18.7 

SheepBeef_Hill 3.9 0.2 12 

Urban 10.7 -7.9 6.8 

Water 0 0 0 
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We failed to define satisfactory empirical models for TP concentrations and yields. The fitted 

model parameters were inconsistent with expectations (e.g., they sometimes implied ETCs 

and ETYs that were greater for natural than productive land, or greater for flat than steep land). 

The failure to define satisfactory empirical TP models is probably because our simple Types 

do not discriminate variation in important natural processes that determine P concentrations 

and yields, including: geogenic supply; mobilisation (erodibility, rainfall slope etc); and 

microbially mediated reduction-oxidation. It is noted that the three typologies examined by this 

study also do not discriminate variation in natural P concentrations and yields and this will 

contribute significantly to the uncertainty of their associated export coefficients (i.e., lookup 

tables). 

Case study application of empirical models 

We applied the new empirical TN models in a simple case study based on the Manawatū River 

catchment. For the empirical concentration and yield models, 84% and 97% of observations 

fell within the 90% prediction intervals, respectively. This indicates that the prediction intervals 

are reliable estimates of model uncertainties. The empirical TN yield model had satisfactory 

performance, minimal bias and RMSD of 2.8 kg ha-1 yr-1. The empirical concentration model 

had poorer performance, largely due to a large (-29.3%) bias, indicating consistent over-

prediction by the model.  

We used the empirical models as well as an existing process-based model that had previously 

been developed for the Manawatū River catchment to model a range of land use change and 

mitigation scenarios. Predictions of changes in instream loads under the scenarios made using 

all models were in close agreement.  

Discussion 

Given the median CAEC for the monitoring station catchments in this study was 

12 kg TN ha-1 yr-1, the minimum between-typology difference in CAEC of 4 kg ha-1 yr-1 

represents a characteristic uncertainty in catchment TN loads of at least 33%. Given the 

median CAEC for the monitoring station catchments was 0.62 kg TP ha-1 yr-1, the between-

typology difference in CAEC of 0.4 kg TP ha-1 yr-1 represents a characteristic uncertainty in 

catchment TP loads of 66%. As well as these random components of uncertainty there were 

systematic differences between typologies (quantified by bias).  

This study cannot indicate which set of export coefficients are closest to the true value, or 

which Types are most incorrect within each typology. At least a portion of the discrepancy 

between the typologies will likely be attributable to differences in the details of the OVERSEER 

applications that were used to quantify the export coefficients for agricultural land. As for all 

numerical models, differences in the inputs to OVERSEER, even within plausible ranges, can 

result in appreciable differences in model output. The results of this study highlight that these 

and other sources of uncertainty associated with export coefficients make appreciable 

contributions to the uncertainty of catchment nutrient models. 

The study indicates that CAECs for TN and TP are often too low compared to the calculated 

instream loads. It was generally beyond the scope of this study to identify the Types (or other 

particular conditions within a Type) for which export coefficients are too low. However, there 

was evidence that TN export coefficients for Forestry and Natural land cover are too low for all 

three typologies. 

If we let the characteristic between-typology difference in CAEC for TN of 4kg TN ha-1 yr-1 

represent a first order estimate of uncertainty of the catchment source loss, we can estimate 

the contribution of source load uncertainty to the uncertainty of the attenuation coefficient. For 
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example, for a catchment with a CAEC of 20 kg TN ha-1 yr-1, the 95% confidence interval for 

source load extends from 12 to 28 kg TN ha-1 yr-1. If the catchment has an instream load 

(expressed as a yield) of 10 kg TN ha-1 yr-1, the attenuation coefficient is 0.5 and the 95% 

confidence interval extends from 0.17 to 0.64. The range in the attenuation coefficient is, 

therefore, almost half of the physically possible range of an attenuation coefficient. This 

indicates that export coefficient uncertainty represents a considerable contribution to the 

uncertainty of attenuation parameters of process-based catchment nutrient models. Similarly, 

the study also showed that uncertainty associated with instream loads makes large 

contributions to the uncertainty of estimated attenuation coefficients.  

The uncertainties associated with export coefficients and instream loads are combined in 

process-based catchment nutrient models and contribute to their overall uncertainty. It was 

beyond the scope of this study to assess this combined uncertainty. However, the results of 

this study provide useful information for making estimates of the uncertainty of process-based 

models. In general, the study indicates that there are large uncertainties associated with 

process-based nutrient catchment models that use any of the three typologies examined by 

this study and/or that are calibrated to instream loads that are calculated from monthly water 

quality monitoring data.  

The alternative ‘empirical’ approach to parameterising catchment water quality models for 

nitrogen (TN) concentrations and yields avoids the use of uncertain export coefficients or the 

requirement to calibrate attenuation parameters. The empirical models allow the user to 

estimate the 90% prediction interval as an estimate of the uncertainty of the empirical model 

predictions for any catchment. This provides a simpler and more transparent way to quantify 

model uncertainty than process-based models. 

The empirical models presented in this report provide simple and easily-used tools that can be 

applied at any location within New Zealand. We have developed a dataset that provides 

proportions of catchment area occupied by each Type used by the TN concentration and yield 

models for all segments of national digital river network1 (catchment area >10 km2)2. These 

data allow estimates of yield or concentration to be made at any location in New Zealand. In 

addition, the data could also be used for national- and regional-scale assessments that aim to 

rapidly assess impacts of land use and land management scenarios at any location in New 

Zealand.  

An important caveat that applies to the empirical models is associated with the national scale 

of the dataset that was used to derive the parameters. Because the water quality station data 

were limited, we were only able to derive robust ETCs and ETYs for a limited number of Types. 

This means the models only coarsely resolve variation in diffuse source loss of N across the 

landscape. An additional caveat that applies to the empirical models is that as the spatial extent 

of a modelled domain reduces (e.g., they are used at the scale of individual catchments), there 

is a reduction in applicability of the model parameters (ETCs and ETYs). This is because the 

empirical models were fitted to a national dataset and the ETC and ETY values are therefore 

national in scope. As the model domain decreases, the parameters will be potentially biased 

(not represent the conditions associated with the smaller model domain). 

We note that catchment models are used in scenario analyses. In this type of application, the 

objective is generally to evaluate relative differences in concentrations and loads between 

scenarios. It is reasonable to assume that the uncertainty of relative differences will be less 

 
1 The digital network associated with the River Environment Classification (version 2.4) described by Snelder and Biggs (2002). 
2 Available in the Whitiwhiti Ora Data Supermarket: https://landuseopportunities.nz/ 
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than the uncertainty of predictions of absolute quantities. However, this study did not test the 

validity of this assumption, and this would be a useful direction for future research. 
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1 Introduction 

The National Policy Statement – Freshwater Management (NPS-FM) requires that regional 

councils identify freshwater objectives and associated limits that define acceptable levels of 

resource use and support for multiple other values. Because there are potentially many ways 

that these outcomes can be achieved, finding the most acceptable solution involves 

exploration of options. Integral to this is the use of catchment models that provide a basis for 

simulating the impacts of land use and management on contaminant levels in freshwater 

receiving environments.  

Nitrogen (N) and phosphorus (P) are key contaminants associated with land use that regional 

councils are obliged to consider because they are nutrients that drive the state of several 

attributes mandated by the NPS-FM, including river periphyton and lake phytoplankton. 

Catchment models are used to link nutrient losses from multiple sources in a catchment, 

including diffuse losses from agricultural land, to N and P concentrations and loads in 

downstream receiving environments (e.g., Elliott et al. 2016). Process-based catchment 

models are based on a mass balance, in which it is assumed that observed instream loads 

are the sum of the upstream source contributions, less any net loss of mass during transport 

down the drainage network. The net loss is referred to as “attenuation”. Attenuation of N and 

P occurs due to natural processes such as denitrification (N), sorption (P), and biological 

uptake (N and P). Setting up mechanistic catchment nutrient models involves defining 

parameters, which at least quantify rates of N and P loss from multiple sources (including land) 

and attenuation rates. Typically, the parameters representing N and P loss rates are derived 

from external sources including literature and other models and attenuation parameters are 

generally determined by reconciliation of the estimates of losses from land parcels in a 

catchment with the loads observed at water quality monitoring stations (Semadeni-Davies et 

al. 2020, 2021). Once set up and calibrated, catchment models can be used to explore the 

potential impact of alternative policy options, or planned mitigation actions, relating to changes 

in land management or land use.   

Because catchment nutrient modelling involves representing contaminant losses at landscape 

scales, typologies are often used to simplify the parameterisation of diffuse nutrient losses 

from individual land parcels within a catchment. The use of typologies in environmental 

modelling is based on the recognition that, while no two locations are the same, it is generally 

not feasible to treat every location as unique. Therefore, some level of compression of detail 

(i.e., allocating locations to classes such that all locations in a class can be considered similar) 

is necessary in most environmental management tasks such as monitoring, reporting and 

policy development (McMahon et al. 2001). Typologies are used to group land areas into 

Types. Land areas belonging to a Type are considered sufficiently alike in terms of one or 

more characteristics of interest (e.g., nutrient loss rates, economic returns, response to 

management actions/mitigations) that they can be treated as the same. The grouping process 

is guided by principles that establish how various environmental factors influence the 

characteristic(s) of interest and how variation in these factors can be delineated by categories. 

The process is also guided by the availability of supporting data to characterise the responses 

expected from each Type and the availability of appropriate spatial data to define factors and 

their categories.   

In the context of catchment nutrient modelling, typologies designed to reflect variation in 

diffuse nutrient losses are generally defined by combining land use or cover (a factor that may 

be sub-divided into categories such as dairy farms, native forest, urban) with environmental 
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factors that influence nutrient loss rates such as climate, land slope, and soil types (e.g., 

Monaghan et al. 2021; Srinivasan et al. 2021). A challenge in defining a typology is finding the 

optimal compression of detail. Where there are few Types, variation in the characteristics of 

interest cannot be represented with a great deal of detail. However, as the number of Types 

increase, the differences in characteristics between the Types will become less distinct and 

the increased resolution becomes more difficult to justify. Regardless of what principles are 

used to develop typologies, they cannot represent all the detail of reality. Therefore, 

environmental typologies cannot provide optimal discrimination of any individual characteristic 

and there is no ‘correct’ solution (Udo de Haes and Klijn 1994).  

To date, most catchment nutrient models in New Zealand employ typologies of some kind to 

spatially represent diffuse losses for the catchments of interest. Typologies are used to first 

categorise locations that can be considered similar (i.e., a Type). Each Type is then assigned 

a representative diffuse source contaminant loss rate. Diffuse contaminant loss refers to 

losses from the surface (runoff), or from the bottom of the root zone (leaching), of a land parcel. 

We refer to the estimated diffuse loss rate for a Type as an “export coefficient3”, which has 

units of kg ha-1 yr-1. We refer to “look up tables” that associate each Type defined by a typology 

with an export coefficient.  

Export coefficients are generally derived from published information (such as compilations of 

measured losses from catchments with a homogenous land use) or mechanistic modelling. 

Modelled quantification of export coefficients for Types representing agricultural land in 

catchment modelling studies in New Zealand have typically relied on the farm-scale 

OVERSEER model (AgResearch 2016). Recently published studies have populated look up 

tables with OVERSEER-based export coefficients (for TN and TP) for specific typologies that 

have national coverage (Monaghan et al. 2021; Srinivasan et al. 2021). Thus, typologies 

provide estimates of variation in diffuse nutrient contributions across the landscape that can 

be used as parameters in catchment models.  

A significant challenge in catchment nutrient modelling is robust accounting and reporting of 

uncertainty. Two major sources of uncertainty in process-based models are the diffuse source 

loads and the calculated instream loads, which both then contribute to uncertain estimates of 

calibrated attenuation parameters. Uncertainties associated with observed instream loads 

based on monthly monitoring data are often in the order of +/- 20% for TN loads and +/- 40% 

for TP loads (Snelder et al., 2017).  Uncertainties associated with estimates of diffuse source 

loads derived from typologies and associated export coefficient lookup tables arise from the 

mechanistic model uncertainty (e.g., 30%, (Shepherd et al. 2013; Etheridge et al. 2018), the 

expected within-Type variation associated with the typology (e.g., 20 to 30%, (Srinivasan et 

al. 2021), as well as uncertainties associated with the mapping of Types across the landscape 

(Etheridge et al. 2018). To date, combining all sources of uncertainty to fully characterise 

catchment model uncertainty or to estimate the uncertainty of attenuation parameters has not 

been undertaken in New Zealand. Failing to account for and report uncertainties can lead to 

overconfidence in the evidence produced by catchment modelling and limits the ability to make 

risk management-based decisions. 

There are two tractable first steps toward quantifying components of the uncertainty of 

process-based models. First, analyses can be conducted to assess the consistency of export 

coefficients associated with different typologies. The level of consistency between the 

catchment average values of export coefficients associated with different typologies would 

 
3 Note that some models and authors use ‘export coefficient’ to mean the yield after attenuation (i.e., the contaminants 

delivered at some downstream location after attenuation).  
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provide useful information for making first order estimates of the uncertainty of process-based 

models. However, this type of analysis has not been undertaken in New Zealand. Second, the 

uncertainty associated with instream load estimates is rarely taken into account when 

calibrating attenuation parameters of process-based catchment models. Quantification of 

uncertainty associated with attenuation parameters would also provide useful information for 

making first order estimates of the uncertainty of process-based models. 

An alternative approach to using process-based catchment models with the associated 

parameterisation based on export and attenuation coefficients, is to characterise diffuse 

source contributions purely from observed (empirical) data. There are several hundred water 

quality stations with observed concentrations and flows throughout New Zealand and 

comprehensive mapping of land use and environmental factors (to define typologies) across 

the country that constitutes an extensive set of empirical data. There are advantages in 

parameterising catchment models directly on these data, rather than relying on export 

coefficients derived from external sources. We define a new class of purely empirical 

catchment water quality models (hereafter, ‘empirical models’) as an alternative to traditional 

process-based catchment models. These models offer some advantages in terms of 

transparency, ease of implementation, and defensibility as well as more easily estimated 

model uncertainty. The main disadvantage with an empirical approach is the number of Types 

that can be discriminated will be limited by the availability and distribution of water quality data; 

a smaller range of Types will limit the spatial detail that can be represented by the models. 

The development of empirically-based catchment water quality models is predicated on the 

recognition that observed instream nutrient loads and concentrations represent the 

combination of upstream export of nutrients from land areas belonging to different Types, the 

subsequent attenuation of these exports, as well as contributions from point sources. For this 

study, therefore, we define an empirical Type yield (ETY) as the expected annual load per unit 

area, realised at a point in the drainage network (post attenuation), generated by diffuse losses 

associated with a specific Type that is defined by a typology. ETYs have the same 

measurement units as export coefficients (kg ha-1 yr-1), however, all other things being equal, 

ETYs are less than export coefficients because the former include attenuation. If a look-up 

table of ETYs (and their uncertainties) for a specific typology can be estimated from empirical 

data, these values could be used to parameterise catchment nutrient models without the need 

to rely on uncertain export coefficients or to calibrate parameters representing attenuation. 

Like mechanistic catchment models, models parameterised using ETYs could be used to 

make “what if” simulations of changes in catchment nutrient loads under changes in land use 

and land management.  

Empirical models that directly predict nutrient concentrations could also be quantified and used 

in a similar way to those described above for nutrient loads. In this study, we define the 

empirical Type concentration (ETC) to be the concentration realised at a point in the drainage 

network (post attenuation), generated by diffuse losses associated with a specific Type that is 

defined by a typology. The ETC has the units mg m-3. An advantage of the ETC approach is 

that there are significantly more sites available across New Zealand for which concentration 

data is available compared to load estimates. This means that, compared to ETYs, there is 

more statistical power and the possibility therefore of deriving robust ETCs for a more detailed 

typology (i.e., more Types and greater environmental specificity). 

This study used the available data to explore approaches to parameterising catchment nutrient 

models in the New Zealand context with two aims. First, we aimed to compare catchment N 

and P losses estimated using published typologies (and their associated export coefficient 
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lookup tables) with each other, and with observed instream loads. Comparison of estimated 

losses between different typologies can provide insight into uncertainties associated with loss 

rate parameters and comparison to instream loads provides insight into uncertainties 

associated with parameters representing attenuation. Second, we aimed to derive typology-

based ETYs and ETCs for modelling nutrients anywhere in New Zealand. These empirically 

based model parameters could provide an alternative, or complementary, approaches to 

process-based catchment nutrient modelling that may be appropriate in some circumstances. 

We aimed to demonstrate the use of empirical models and compare them to a process-based 

model to provide an indication of their efficacy and to guide future applications. 

2 Overview of data and methods 

The analyses undertaken by this study can be divided into two primary streams of work: 

1. Evaluation of estimates of catchment losses of TN and TP based on existing typologies 

and associated export coefficients. 

2. Development of empirical catchment water quality models. 

The analyses undertaken by these two workstreams were informed by a common set of 

existing data that are shown schematically as blue parallelograms in Figure 1 and are 

explained in detail in Section 3. Three existing typologies and their associated export 

coefficient lookup tables were included in the study. Spatial data describing land use, climate 

(precipitation) and topography (land slope) were obtained so that all land in New Zealand 

could be categorised into the Types defined by the existing topologies. The spatial data were 

also used to define the simple typologies that are part of the empirical water quality models. 

River water quality data was obtained for long term state of environment monitoring from 

regional council and NIWA records. Point sources data as annual loads discharged at specific 

locations were obtained from a national database.  

The first analyses that were undertaken by the study involved processing the existing data 

into the specific inputs that were required by the two workstreams. Step A involved the 

development of national scale maps of source export coefficients (nutrient losses per unit 

area). by firstly mapping each typology, and then joining on Type export coefficients from 

lookup tables.  Step A is explained in Section 4.2.1. Steps B and C involved processing the 

river water quality data and point source data to obtain calculated instream loads and 

concentrations attributable to diffuse sources (i.e., excluding point sources) for each 

monitoring station. Steps B and C are explained in Section 4.1. 

The first workstream is represented by steps 1, 2 and 3 shown on the left of Figure 1. Step 1 

compared the catchment average export coefficients, CAECs (spatially weighted diffuse 

source export coefficients) associated with each typology and quantified the extent to which 

the CAECs were consistent between typologies. Step 1 is explained in Section 4.1.2. 

Step 2 compared the calculated instream loads for each monitoring station with the CAECs 

for the upstream catchment that were estimated with each of the typologies. 4.1.3. Our 

expectation was that the CAECs would be greater than the calculated instream loads because 

a proportion of the source load is attenuated by catchment processes. Step 3 used the CAECs 

and calculated instream diffuse source loads to estimate attenuation coefficients and their 

uncertainties. Step 2 and 3 are explained in Section 4.1.3. 

The second workstream is represented by steps 4, 5 and 6 on the right of Figure 1. Steps 4 

and 5 combined spatial data and the instream water quality data to derive empirical yield and 
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empirical concentration water quality models and are explained in Section 4.3. Step 6 applied 

these empirical models in a case study catchment and evaluated their performance against 

an existing process-based model of the catchment. Step 6 is explained in Section 4.4. 

 

Figure 1. Schematic diagram of the input data and analyses undertaken by this study.  The 

blue parallelograms indicate existing input data. The yellow hexagons indicate preparation of 

specific input data to subsequent analysis steps. The white rectangles indicate analyses and 

associated outputs from the study. 

3 Data 

3.1 River Data 

3.1.1 Water quality data 

Methods describing the acquisition of river water quality monitoring data and processing are 

described in Whitehead et al. (2021a). The dataset included 1081 water quality monitoring 

stations with TN observations and 1074 sites with TP observations. 

3.1.2 Flow Data 

River water quality data was obtained for long term state of environment monitoring from 

regional council and NIWA records as part of the most recent national state of the environment 

assessment (Whitehead, Fraser, Snelder, et al. 2021). For the water quality monitoring 

stations that could be associated with river flow gauging stations, we obtained the entire time 

series of available mean daily flow data from regional councils and NIWA databases. River 

flow gauging stations were only reliably identified, and flow records obtained for a subset 

(~400) of the water quality monitoring stations. 
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3.1.3 Point source data 

Point source contributions of TN and TP in the catchment of each monitoring station were 

obtained so that the total catchment mass loss of the two nutrients on an annual basis could 

be estimated (see Methods). Point sources were based on a preliminary catalogue of annual 

point source loads (t y-1) collated by NIWA (A. Semandi-Davies, pers comm.) 

3.2 Drainage Network 

The hydrological connectivity for the analysis was defined by a GIS-based digital drainage 

network comprising rivers and catchment boundaries that is the basis for the River 

Environment Classification (REC; Snelder and Biggs, 2002). The digital network was derived 

from 1:50,000 scale contour maps; in version 2 (herein referred to as DN2.4) it represents 

New Zealand’s rivers as 590,000 segments (delineated by upstream and downstream 

confluences), each of which is associated with a sub-catchment.  

3.3 Land use 

Land use is a key characteristic of the typologies used in both streams of this project. Each of 

the three existing typologies examined in the study was developed and tested with different 

land use layers. These differences are associated with the source and date of the datasets 

and how these were combined. As we expect that land use will be a significant contributor to 

variation in nutrient losses, we chose to define a single land use layer to be used within all 

typologies in this report, to reduce the contribution of variation in land use mapping on 

differences in estimated aggregate nutrient losses. Further, our ability to define land use was 

restricted to the use of publicly available datasets.  

Our land use layer is fundamentally defined based on land cover information from the Land 

Cover Database (LCDB v5.04), with pastoral land cover split between Dairy and Sheep and 

Beef land uses based on information about the extent of sheep and beef and Dairy farm units 

obtained from Richard McDowell (AgResearch pers comm). We aggregated LCDB classes 

into seven simplified land uses, where the aggregation took into consideration the land uses 

mapped in the three typologies and judgement about expectations of similarity in nutrient loss 

rates between land covers.  The reclassified categories are described in Table 1. 

  

 
4 https://lris.scinfo.org.nz/layer/104400-lcdb-v50-land-cover-database-version-50-mainland-new-zealand/ 
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Table 1. Re-classification of LCDBV5 Name_2018 classes in land use categories. 

Class_2018 LCDBV5 Name_2018 Reclassified category 

0 Not land Bare 

1 Built up Urban 

2 Urban Park Urban 

5 Transport Inf Urban 

6 Mines&Dumps Urban 

10 Sand&Gravel Bare 

12 Landslide Bare 

14 Snow&Ice Bare 

15 Alpine Grass Natural/ Sheep & Beef 2 

16 Gravel&Rock Bare 

20 Lake&Pond Water 

21 River Water 

22 Estuarine Water 

30 Cropland Cropland 

33 Orchard&Vineyard Orchard&Vineyard 

40 High Producing Grass Dairy/Sheep&Beef 2 

41 Low Producing Grass Dairy/Sheep&Beef 2 

43 Tussock Grassland Natural/ Sheep & Beef 1 

44 Depleted Grassland Natural/ Sheep & Beef 1 

45 Herbaceous Freshwater Water 

46 Herbaceous Saline Water 

47 Flaxland Natural 

50 Fernland Natural 

51 Gorse&Broom Natural 

52 Manuka&Kanuka Natural 

54 Broadleaved Indigenous hardwoods Natural 

55 Sub Alpine Shrubland Natural 

56 Mixed Exotic Shrubland Natural 

58 Grey Scrub Natural 

64 Forest Harvested Forestry 

68 Deciduous Hardwood Natural 

69 Indigenous Forest Natural 

70 Mangrove Water 

71 Exotic Forest Forestry 

Notes: 

1. Depleted and Tussock grassland areas that were coincident with Sheep & Beef land use (as 

defined by Monaghan et al. 2021) were specified as Sheep & Beef; remaining areas were 

defined as natural. 

2. Productive grassland areas that were coincident with Dairy land use (as defined by 

Monaghan) were specified as Dairy; remaining areas were defined as Sheep & Beef  
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3.4 Typologies 

The three typologies and associated nutrient loss lookup tables explored in this study are 

herein referred to as “Monaghan” (Monaghan et al. 2021), “Srinivasan” (Srinivasan et al. 2021) 

and “LWP/Bright” (Bright et al. 2018). The referenced publications provide complete 

descriptions of the typology development and population of nutrient loss lookup tables. The 

following section provides a brief description of the key characteristics of each typology and 

the methods used to extrapolate each Typology to provide national coverage for use in this 

study. 

Each typology comprises a number of Factors (for example land use, soil type, slope etc) and 

each Factor is then subdivided into a number of Categories (e.g., slope might be categories 

into “Steep” and “Flat”). Each typology comprises several Types that are defined as unique 

combinations of different categories across the factors. The lookup tables for all three 

typologies were predominantly populated with export coefficients derived from OVERSEER 

model outputs (particularly for pastoral land uses), with some land use or cover categories 

(e.g., native forest, plantation forest) populated from expert knowledge or other published data. 

The Srinivasan typology provides the most complete coverage of New Zealand (all land is 

assigned a Type and an associated export coefficient, except for urban land use). Spatial 

layers describing the distribution of the categories of the Srinivasan slope and moisture factors 

were derived based on the descriptions provided in Srinivasan et al. (2021). These were 

fundamentally based on slope factors from the Land Resource Inventory (Newsome et al. 

2008), mean annual rainfall data provided by Ministry for the Environment5 and mapped 

irrigation data obtained from the Ministry for the Environment6. We used the land use map 

described in section 3.3 within the typology. Srinivasan does not provide losses for Bare and 

Water land covers. As these land covers generally have small aerial contributions and no other 

suitable values were available, TN and TP losses were set to zero. For the urban land cover 

category, TN and TP export coefficients were derived from Moores et al. (2017).  

The Monaghan typology is farm based, where each farm is assigned to a specific Type.  These 

Types are restricted to pastoral (Sheep & Beef and Dairy) land uses. Monaghan subdivides 

dairy Types by 4 environmental factors: temperature (2 categories), wetness (4 categories), 

drainage (3 categories) and slope (3 categories).  In total there were 72 Types associated with 

dairy land use. Monagahan defines seventeen Sheep & Beef Types based on variable 

combinations of region, climate and farming system. Spatial layers assigning land to the 

Sheep & Beef and Dairy Types defined by Monaghan et al (2021) were obtained from Richard 

McDowell (AgResearch pers comm). Areas of land not assigned to a Monaghan Type were 

infilled with Types and associated loss rates from Srinivasan.  Further, to ensure that total 

areas of land use were consistent between typologies, Monaghan Types and loss rates were 

overwritten with Srinivasan Types and loss rates where the land use map (described in section 

3.3) identified land uses other than Sheep & Beef or Dairy. 

The LWP/Bright typology is based on three environmental Factors: climate zone (20 

categories); irrigability (2 categories); and soil (3 categories), as well as irrigation status (2 

categories) and land use (5 categories). The associated nutrient loss lookup tables only 

provide loss rates for TN, and the land use categories are restricted to productive land uses 

(Dairy, Sheep & Beef, arable, horticulture and forestry). The original spatial layers describing 

the distribution of the categories associated with the LWP/Bright typology factors (climate 

 
5 data.mfe.govt.nz/layer/89421-average-annual-rainfall-19722016 
6 https://data.mfe.govt.nz/layer/105407-irrigated-land-area-raw-2020-update/ 
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zone, soil class and irrigability) were made available for this study.  Mapped irrigation was as 

per Srinivasan, and we used the land use map in described in section 3.3.  Areas of land not 

assigned to a LWP/Bright Type were infilled with Types and associated loss rates from 

Srinivasan. 

4 Methods 

4.1 Preparation of water quality data 

4.1.1 Calculating instream loads 

We calculated the annual instream loads of TN and TP (i.e., the total mass of TN and TP 

passing a specific location in a river) at each water quality monitoring station that complied 

with the following load data requirement criteria:   

• Observations in at least 8 years in in the 10 years up to the end of December 2020 

• At least 60 total concurrent observations of flow and concentrations 

• At least 80% of all quarters (defined as January -March, April-June, July-September, 

October-December) in the most recent 10 years.   

Rating curve methods were used to calculate the instream loads at sites that had concurrent 

TN and TP concentration observations and river daily mean flow records by (1) identifying the 

best rating curve method (out of four possible alternatives) for each site (through manual 

inspection of all possible rating curves for each site), and then(2) calculating loads by 

combining the best rating curve with the daily flow time series. A full description of the load 

calculation methodology is provided in Appendix A. 

We used all available flow-concentration observations at each site to characterize the rating 

curves and set temporal trend terms in the underlying rating curve models so that the load 

calculations represent the expected mean annual load for 2020 (see Appendix A for details). 

Setting temporal trend terms to a fixed year (for those models that use time variable 

components), means that trends were accounted for in the calculation of loads. We also 

estimated 95% confidence intervals for the estimated instream loads, following a 

bootstrapping procedure (described in Appendix A3). 

For the following analysis, instream loads are generally reported as instream yields, which are 

the instream load divided by the upstream catchments area, with units of kg ha-1 yr-1. 

4.1.2 Calculating median concentrations 

We characterised TP and TN concentrations at each water quality monitoring station, as the 

median of all monthly observations for the 5-year period ending December 2020. The 

statistical precision of the median depends on the variability in the water quality observations 

and the number of observations. We therefore used filtering rules to restrict the sites that were 

used in our analysis to those for which the median could be calculated with reasonable 

precision. For a given level of variability, the precision of the median increases with the number 

of observations. As a general rule, the rate of increase in the precision of compliance statistics 

reduces for sample sizes greater than 30 (i.e., there are diminishing returns on increasing 

sample size with respect to precision  above this number of observations; McBride 2005). In 

addition, because water quality observations tend to fluctuate seasonally, the precision of the 

calculated median is affected by how well each season is represented over the period of 
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record. Our filtering rules therefore restricted site × variable combinations that were used in 

the analyses to those with measurements for at least 90% of the sampling intervals in that 

period (at least 56 of 60 months). Site by variable combinations that did not comply with these 

rules were excluded from the subsequent analysis. The time period and filtering rules are 

consistent with those used by Whitehead et al. (2021). 

4.1.3 Calculating point source contributions to instream yields and concentrations 

Each point source in the dataset described in section 3.1.3 included location information in the 

form a unique segment identifier (nzsegment).  Point sources were assigned to the digital 

network based on the segment identifier, and load contributions were accumulated in the 

downstream direction of the network.  Point source yield contributions at all segments of the 

digital network were estimated from the accumulated point source loads divided by upstream 

catchment area.  Point source concentration contributions at all segments of the digital 

network were estimated by dividing point source loads by estimates of segment site mean 

flows (sourced from Woods et al. 2006), with appropriate units conversion. 

4.2 Calculating typology catchment average export coefficients  

For each typology, we overlaid the spatial layers associated with the typology factors to 

generate maps of typology Types. To achieve this, we converted all spatial layers into 

coincident raster layers with 200m x 200m cells. This was a practical decision made for 

processing efficiency and took into consideration the requirement for national coverage, 

differences in the source data precision as well as a spatial scale that was commensurate with 

the typical smallest productive farm entities. As a test of the imprecision introduced by this 

choice, we compared estimates of rasterised catchment areas against catchment areas 

defined for the DN2.4.  We found that above a catchment area of approximately 10 km2 that 

differences in the estimates were very small (<<1%). 

For each typology, maps of nutrient export coefficients were generated by assigning export 

coefficients from the relevant lookup tables to the typology Type maps. For each Type, areas 

that were infilled (either from literature or another typology) were marked to allow tracking of 

the proportion of infilled Types upstream of any location within the digital network. 

Each typology export coefficient map was overlaid with a coincident raster layer of the DN2.4 

sub-catchments. Sub-catchment diffuse source loads were calculated by summing the 

products of the raster cell nutrient export coefficient by the raster cell area, over each sub-

catchment. Sub-catchment diffuse source loads were then accumulated in the downstream 

direction of the DN2.4 network to derive an estimated catchment diffuse source load for each 

nutrient for each network segment. At each network segment, the estimated catchment diffuse 

source load was expressed as a catchment average export coefficient (CAEC) by dividing the 

estimated diffuse source load by the upstream catchment area. A similar process was followed 

to identify the percentage of upstream catchment area that was not based on infilled export 

coefficients (see section 3.4), for each Typology. 

The resultant products for each Typology and nutrient (TN or TP) were: 

• Estimates of CAECs at each segment of DN2.4 (kg ha-1 yr-1) 

• Proportion of upstream catchment area where export coefficients were not based on 

infilled data. 
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4.3 Examination of typology catchment average export coefficients  

4.3.1 Between typology comparison of CAECs 

For each typology we produced maps of the estimates of the CAECs as colour coded maps 

of the DN2.4. These maps provide a visual comparison of the estimates produced from the 

different typologies and identify regions and environments where these differences are 

greatest. For each typology, network segments with less than 50% of upstream area 

accounted for by the typology, or total upstream area less than 10km2 were excluded from the 

maps.   

We also extracted the estimates of CAEC for each typology and water quality monitoring 

station. We compared the predictions between each pair of typologies, evaluating the 

consistency of the estimates qualitatively using scatter plots, and quantitatively based on five 

statistics: regression R2, Nash-Sutcliffe efficiency (NSE), bias (BIAS), percent bias (PBIAS), 

and the root mean square deviation (RMSD).  

The regression R2 value is the coefficient of determination derived from a regression of the 

observations against the predictions. The R2 value shows the proportion of the total variance 

explained by the regression model (Piñeiro et al. 2008). However, the regression R2 is not a 

complete description of model performance.  

NSE indicates how closely the observations coincide with predictions (Nash and Sutcliffe 

1970). NSE values range from −∞ to 1. An NSE of 1 corresponds to a perfect match between 

predictions and the observations. An NSE of 0 indicates the model is only as accurate as the 

mean of the observed data, and values less than 0 indicate the model predictions are less 

accurate than using the mean of the observed data.  

Bias measures the average tendency of the predicted values to be larger or smaller than the 

observed values. Optimal bias is zero, positive values indicate underestimation bias and 

negative values indicate overestimation bias (Piñeiro et al. 2008). We evaluated the 

percentage bias (PBIAS) as the sum of the differences between the observations and 

predictions divided by the sum of the observations (Moriasi et al. 2007).  

The root mean square deviation (RMSD) is a measure of the characteristic model statistical 

error or uncertainty. RMSD is mean deviation of predicted values with respect to the observed 

values (distinct from the standard error of the regression model). RMSD can be used to 

evaluate the confidence intervals of the predictions. 

4.3.2 Comparison of typology CAECs with instream yields and estimation of 
attenuation coefficients 

We compared the CAECs from each typology against monitoring station instream yields 

visually using scatter plots.  We expect the sum of all source loads into a catchment (diffuse 

and point sources) to be greater than the observed instream load.  Points that lie above the 

1:1 line (i.e., instream yields are greater than CAECs plus point source yields) provide some 

indication that some or all of the typology export coefficients are underestimated. 

The proportion of source load that is lost between the diffuse source and the instream 

observation point can be attributed to attenuation and used to quantify attenuation coefficients 

for modelling. This simple attenuation coefficient represents the effects of various processes 

such as nutrient uptake and transformation along the flow pathways. We expected attenuation 

coefficients to be in the range of approximately 0.1-0.9. A value of 1 would indicate that all of 

the load is attenuated and none of the input source load from the catchment of a monitoring 
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station appears at the monitoring station. A value of zero indicates that there is no 

attenuation/loss, and all of the source load appears at the monitoring station. An attenuation 

coefficient of less than zero indicates that instream loads at the monitoring station are greater 

than the sum of estimated source loads. We evaluated attenuation coefficients at each 

monitoring station, for each typology and nutrient and used these to explore whether there 

were any systematic patterns in attenuation coefficient related to certain Types or land uses, 

which might provide some evidence of issues with some or all the Type export coefficients. 

An estimate of attenuation coefficients was made the following equation: 

𝐴𝑡𝑡. 𝑐𝑜𝑒𝑓𝑓 = 1 −
𝑌−𝑃𝑆

𝐶𝐴𝐸𝐶
        (Equation 1) 

Where: 

Att. Coeff Attenuation coefficient (-) 

Y  Estimated instream yield at the observation site (kg ha-1 yr-1) 

CAEC  Estimated catchment average export coefficient (kg ha-1 yr-1) 

PS  Estimated point source contributions (kg ha-1 yr-1) 

By subtracting the point source contributions from the instream yield, we are making the 

assumption that point sources are not attenuated, and therefore the calculated attenuation 

coefficient should represent the diffuse pathway attenuation.  

We evaluated upper and lower 95% confidence limits for the attenuation coefficient based on 

the 95% confidence intervals of the instream load estimate by: 

𝐴𝑡𝑡. 𝑐𝑜𝑒𝑓𝑓 𝐿𝐶𝐼 = 1 −
𝑌𝑈𝐶𝐼−𝑃𝑆

𝐶𝐴𝐸𝐶
     (Equation 2) 

𝐴𝑡𝑡. 𝑐𝑜𝑒𝑓𝑓 𝑈𝐶𝐼 = 1 −
𝑌𝐿𝐶𝐼−𝑃𝑆

𝐶𝐴𝐸𝐶
    (Equation 3) 

We note that these confidence intervals do not consider the precision of the point source loads 

or the catchment diffuse source loads. 

Calculated attenuation coefficients were mapped to explore whether there were any spatial 

patterns to explain variability. We also compared the evaluated attenuation coefficients 

against catchment proportions of land use, to investigate potential explanations for variability 

in calculated attenuation coefficients, and to evaluate whether there is evidence of 

underestimation of typology export coefficients for specific land uses. 
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4.4 Empirical catchment water quality models 

We propose a new class of purely empirical catchment water quality models (hereafter 

‘empirical models’) that are similar to traditional process-based water quality catchment 

models such as CLUES (Semadeni-Davies et al. 2020, 2021) and SCAMP (Cox et al. 2022) 

in that water quality is modelled as a function of the sum of catchment land areas weighted 

(i.e., multiplied) by constants that represent the contribution of contaminants (N and P) from 

those areas. The primary difference between the empirical models and process-based water 

quality catchment models (hereafter ‘process-based’ models) is how the models are 

parameterised. Process-based models explicitly represent processes of contaminant loss 

from land (source losses) and attenuation to produce a prediction of the instream load or 

concentration at downstream points in the drainage network. Source losses may be derived 

from a typology and associated look up table of export coefficients, directly from a land use 

and management model such as OVERSEER (Semadeni-Davies et al. 2020), or may be 

derived empirically (Elliott et al. 2005). The attenuation coefficients are typically calibrated by 

matching the sum of all catchment losses (i.e., diffuse losses from all land areas and point 

sources) to instream loads calculated from water quality monitoring data (Semadeni-Davies 

et al. 2020). It is important to acknowledge that process-based models represent the 

processes in very lumped forms (e.g., loss, attenuation) and the parameters are often 

empirically derived (export coefficients or loss rates). 

In contrast, parameters for our new class of empirical models are derived from statistical 

models that are fitted to water quality data (instream yields and concentrations) using a set of 

Types (that are similar to the Types defined by typologies) as explanatory variables. In other 

words, these new models are founded on observed data and do not attempt to represent loss 

and attenuation as separate processes. As such, they do not require the provision of export 

coefficients to represent diffuse source losses (as can be the case CLUES and is a 

requirement for SCAMP), nor the calibration of attenuation coefficients. Instead, empirical 

models directly relate Types to yields and concentrations that are derived from water quality 

observations. The empirical models include sets of parameters that are derived for each Type. 

These parameters represent the outcome of the combination of the diffuse source loss from 

land and the attenuation, which means that empirical models represent these two processes 

with a single parameter. 

The empirical models represent the yield or concentration of a contaminant attributable to 

diffuse sources at a location in the drainage network as the weighted sum of the proportion of 

catchment land area occupied by a series of Types. This is expressed mathematically as 

follows: 

𝑍 =  𝛽1𝑃1 + 𝛽2𝑃2 + 𝛽3𝑃3 + ⋯ 𝛽𝑚𝑃𝑚   (Equation 4) 

where Z represents the concentration or yield at a location in the drainage network, 

𝑃1, 𝑃2, 𝑃3, … 𝑃𝑚 are the proportions of catchment area occupied by each Type in the upstream 

catchment. 𝛽1, 𝛽2, 𝛽3 … 𝛽𝑚 are coefficients derived from statistical regression models. The 

coefficients can be interpreted as the expected proportional contribution of each Type to 

concentration or yield. Alternatively, the coefficients can be interpreted as the expected 

concentration or yield for a catchment comprised of only that Type.  

The coefficients 𝛽1, 𝛽2, 𝛽3 … 𝛽𝑚 are derived by fitting linear regression models to the available 

water quality station data (Equation 5). These regression models have the same form as 

Equation 4, but Z represents data describing the observed yields or concentration at water 

quality stations after adjustment for point source contributions in the catchment. The 
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regression model predictors are the proportion of the catchments of each water quality station 

that are occupied by each Type. This is expressed mathematically as: 

[
𝑍1

⋮
𝑍𝑛

] = [

𝑃1,1 ⋯ 𝑃1,𝑚

⋮ ⋱ ⋮
𝑃𝑛,1 ⋯ 𝑃𝑛,𝑚

] × [
𝛽1

⋮
𝛽𝑚

]  

(Equation 5) 

where Z is a 1 x n vector of the observed concentrations or yields at the n water quality stations 

after adjusting for any point source discharges in the catchment upstream, the n x m matrix 

represents the proportion of the catchment of each of n water quality stations (rows) in each 

of m land Types (columns), and β is 1 x m vector of the fitted regression coefficients for each 

of the m land Types. Note that there is one fitted regression coefficient for each Type. Note 

also that the fitted model has no intercept term, which is consistent with concentration or yield 

being zero if there is no land.  

To be clear that the derived coefficients (i.e., 𝛽1, 𝛽2, 𝛽3 … 𝛽𝑚) are used as parameters in 

empirical concentration and yield models, we refer to them hereafter as empirical Type yields 

(ETY) and empirical Type concentrations (ETC). The ETY is the expected annual load per unit 

area realised at a point in the drainage network (i.e., having been attenuated) that is generated 

by a specific Type that is defined by a typology. The units of ETYs are the same as export 

coefficients (i.e., kg ha-1 yr-1). The ETC is the expected concentration, realised at a point in the 

drainage network (i.e., having been attenuated), that is generated by a specific Type that is 

defined by a typology. The units of ETCs are mg m-3. The Types defined by the new class of 

models are similar to Types defined by existing typologies and must exhaustively cover all 

land in the catchment.  

The general form of the empirical catchment water quality models for yield and concentration 

are given by: 

𝑌 =  𝐸𝑇𝑌1𝑃1 +  𝐸𝑇𝑌2𝑃2 +  𝐸𝑇𝑌3𝑃3 + ⋯ 𝐸𝑇𝑌𝑚𝑃𝑚 + 𝑃𝑆𝑌  (Equation 6) 

𝐶 =  𝐸𝑇𝐶1𝑃1 +  𝐸𝑇𝐶2𝑃2 + 𝐸𝑇𝐶3𝑃3 + ⋯ 𝐸𝑇𝐶𝑚𝑃𝑚 + 𝑃𝑆𝐶  (Equation 7) 

where, Y is the yield and C the concentration at a point in the drainage network, and PSY and 

PSC are the yield or concentration forms of the catchment point source contributions (as 

described in 4.1.3), 𝑃1, 𝑃2,  𝑃3, … 𝑃𝑚 are the proportions of area occupied by each Type in the 

upstream catchment, and 𝐸𝑇𝑌1,  𝐸𝑇𝑌2,  𝐸𝑇𝑌3 … 𝐸𝑇𝑌𝑚 and 𝐸𝑇𝐶1,  𝐸𝑇𝐶2, 𝐸𝑇𝐶3 … 𝐸𝑇𝐶𝑚 are the 

empirically derived parameters for yields and concentrations respectively. 

4.5 Derivation of empirical model parameters 

4.5.1 Statistical modelling 

We attempted to derive the regression coefficients shown in Equation 5 for each response 

variable (TN and TP yields and concentrations). Prior to fitting the models, we subtracted an 

estimate of the point source contribution from each of the water quality station concentrations 

or yields so that the response (i.e., 𝑌1,𝑛) was only representing the attenuated diffuse sources 

of N and P.  

There are two considerations with the process of fitting the statistical model expressed in 

Equation 5. First, the distribution of site concentrations and yields at the water quality stations 

will generally not be normally distributed. Normally distributed data (more specifically 

regression residuals) is a requirement of ordinary linear regression (OLS). It is therefore 

common to apply transformations, such as a logarithmic transformation, to normalise the 
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response when fitting OLS models. However, transformation of the concentration or yields 

would mean that the fitted regression coefficients (i.e., 𝛽1, 𝛽2, 𝛽3 … 𝛽𝑛) could not be interpreted 

as ETCs or ETYs for each land Type. We therefore use quantile regression instead of OLS to 

estimate the regression coefficients. Quantile regression is often used when the conditions of 

OLS are not met (Cade and Noon 2003). Whereas OLS estimates the conditional mean7 of 

the response variable given some predictor variables, quantile regression estimates a 

specified quantile of the data. We fitted the model represented by Equation 5 to the median 

(i.e., the 0.5 quantile) value using quantile regression. The prediction from the model should 

be considered as an estimate of the median, conditional on the predictors (i.e., 50% of cases 

can be expected to be greater than or less than the prediction). 

Because quantile regression is non-parametric, the fitted model does not describe the 

probability distribution within which prediction will lie. However, quantile regression models 

can be fitted to any quantile of the data. Therefore, in addition to fitting a model to the median 

(0.5 quantile), we also fitted models to the 0.05 and 0.95 quantiles (of the site concentrations 

and yields) to provide the lower and upper bounds of the 90% prediction interval8. Quantile 

regression models were fitted using the quantreg package of the R Statistical Software (R 

Core Team 2023). 

In addition to the quantile regression models, we fitted OLS models to the same sets of 

predictors. The only information extracted from the OLS model was the R2 value. The R2 value 

of an OLS model indicates the variation in the response that is explained by the model 

(reported as a percentage of total variation), which is a measure of the fit of an OLS model 

that is commonly understood. The purpose of reporting the R2 value was only to provide an 

appreciation of quality of the association between the water quality station concentrations and 

yields and the Types. The OLS model was fitted to the log (base 10) transformed response. 

Because the intercept term was set to zero, the R2 value was evaluated as the squared 

correlation between the fitted values and the observed response (after transformation). 

The second complication is that the predictors (𝑃1, 𝑃2, 𝑃3, … 𝑃𝑚) are what is referred to as 

compositional data. That is, 𝑃1, 𝑃2, 𝑃3, … 𝑃𝑛 represent the composition of the catchment land as 

the proportions occupied by each Type. Because the Types are exhaustive and the predictors 

represent proportions, they sum to one and, therefore the set of all proportions includes 

redundant information (e.g., 𝑃𝑛 = 1 −  ∑ 𝑃𝑖
𝑖=𝑛−1
𝑖=1 ). This means that another condition of 

multivariable regression, that the predictors are independent, is violated. Non-independence 

of predictors is referred to as multicollinearity because the implication is that there is 

correlation between the predictors.  

When there is multicollinearity in the predictors of a regression model, the estimated 

coefficients (i.e., values of 𝛽1, 𝛽2, 𝛽3 … 𝛽𝑚) can become sensitive to small changes in the model. 

For example, small changes in the predictors or cases that are included in the model can 

dramatically change the coefficient values or even their signs. This means that multicollinearity 

reduces the precision of the estimated coefficients and increases their p-values (i.e., 

decreasing their statistical significance and reducing confidence in the estimated values). 

Multicollinearity can therefore make it difficult to justify the model, and this increases as the 

severity of the multicollinearity increases. It is noted that multicollinearity is a problem for 

 
7 The conditional mean of a random variable is its expected value – the value it would take “on average” over an arbitrarily large 

number of occurrences – given a certain set of "conditions". In a multiple linear regression model, these conditions are defined 

by the values of the independent (i.e., predictor) variables.  
8 The prediction interval indicates the range a future individual observation will fall. 
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interpretation of the estimated coefficients but does not affect the predictions or the goodness-

of-fit (performance) statistics of the model (Neter et al. 2004).  

An option to avoid the problem of collinearity is to remove some of the strongly correlated 

predictors. In this analysis, we were wanting to evaluate the coefficients for all predictors, to 

provide parameter values for all land Types and, therefore, this approach was not an option. 

However, the problems caused by multicollinearity reduce with increasing dataset size 

because sampling error reduces and precision increases as sample size increases (Mason 

and Perreault 1991). Because the datasets in this project were reasonably large, we adopted 

the approach of retaining all predictors and carefully inspecting the fitted coefficients and their 

standard errors to ensure that they were generally reasonable (i.e., were not so large as to 

render the coefficient unreliable). We also used cross validation to generate multiple instances 

of the fitted coefficients and used these to evaluate the sensitivity of the coefficients to the 

fitting data.  

4.5.2 Definition of land Types 

We defined Types to be used as predictors (i.e., 𝑃1, 𝑃2, 𝑃3, … 𝑃𝑚 in Equation 5) by combining 

the land use categories described in Section 2.2 with the slope and moisture categories 

defined by the typology of Srinivasan et al. (2021). This resulted in nine possible land use 

categories (Urban, Forestry, Dairy, Orchard & Vineyard, Natural, Sheep & Beef, Cropland, 

Water, Bare), four slope categories (Flat, Rolling, Easy Hill, Steep), and four climate categories 

(Dry, Wet, Moist, Irrigated). The combination of all possible categories produces a total of 9 x 

4 x 4 = 144 potential land Types.  

Regression coefficients for all potential (144) Types cannot be reliably estimated because the 

number of classes are large compared to the fitting dataset size (i.e., ~300 for yields and ~900 

for concentrations). However, all other things being equal, the utility and credibility of a 

catchment model that includes many Types is higher than the converse because it accounts 

for spatial variation in nutrient diffuse sources and allows for simulation of more nuanced 

management actions. We therefore derived sets of Types that comprised differing numbers of 

Types (i.e., each set had a differing value of m in Equation 4). One set of Types was defined 

based on only the land use categories. For the TN concentration and yield models, we 

excluded the Water and Bare land use categories based on our judgement that these 

categories make a negligible contribution to catchment nitrogen loss (i.e., we expected ETY 

and ETC for these Types to be zero). We also defined Types by successively subdividing 

some of the land use categories based on aggregated Srinivasan slope and climate categories 

or by simply using aggregated Srinivasan slope and climate categories. We did not know in 

advance how many regression coefficients could be reliably estimated (by the statistical 

modelling process) for each response variable (i.e., concentrations and yields of TN and TP). 

We therefore defined between six and nine sets of potential Types (depending on the 

response variable) that comprised a variable number of Types, fitted models to each of these 

sets (referred to as model 1, 2, 3 etc) and inspected the fitted coefficients to determine the 

“best” model (see section 4.5.3 below).  

The definition of the sets of potential Types was subjective and was guided by expert opinion. 

We considered the information available in the fitting dataset as well as which land use Types 

are likely to exhibit appreciable differences in unit contributions under differing climate or slope 

categories. Regression coefficients are most likely to be reliably estimated for land Types that 

are consistently occurring and have wide variation in occupancy across the fitting datasets 

(i.e., for which the predictor 𝑃𝑚 covers a wide range of non-zero values). The land use 

categories Dairy, Sheep & Beef, Forestry and Natural were the most consistently occurring 
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non-zero and variable land use categories. We therefore included differing coarse 

subdivisions of each of these land use categories by slope and climate in the nine sets of 

potential land Types. For example, we included subdivision of Dairy into coarse climate 

categories defined by Dry, Irrigated, and the combination of Moist and Wet. We included 

subdivision of Sheep & Beef into climate categories and coarse slope categories defined by 

Flat and the combination of Easy Hill, Rolling and Steep. The land use categories Orchard 

Vineyard, Urban, Cropland, Bare and Water consistently had low occupancy (e.g., the 

predictor 𝑃𝑚 was generally a low or zero value). We therefore included these land use 

categories in the nine sets of potential land Types but did not further subdivide them by climate 

or slope categories.  

The sets of potential land Types (referred to as Set 1 to 9) differed between the TN and TP 

models and comprised differing numbers of land Types (from 4 to 35). A complete description 

of the sets of potential land Types that were used for TN and TP is contained in Appendix B. 

4.5.3 Determination of the best model 

For each response variable (TN and TP yields and concentrations), we fitted separate models 

to each of the sets of Types (i.e., 𝑃1, 𝑃2, 𝑃3, … 𝑃𝑚 in Equation 5). We inspected the fitted models 

and noted several considerations. First, we used the adjusted R2 value of the equivalent OLS 

model as a measure of explanatory power of the models. Second, we examined the values of 

the fitted coefficients for each model. We considered coefficient values of credible models 

would be positive (i.e., we expected all land Types to contribute N and P). We also considered 

that coefficient values of credible models would be consistent with prior knowledge of nutrient 

loss by different types of land use and physiographic categories. In other words, we used prior 

knowledge to assess whether derived coefficients made sense. For example, we expected 

that N losses would be higher for Dairy than Sheep & Beef, and both land uses would have 

higher losses than Natural land cover. We also expected that, everything else being equal, 

regression coefficients for N and P would be higher for wet land Types than dry land Types 

and higher for steep land Types than flat land Types. We also expected that these conceptual 

relationships would often be confounded by cross-correlations and variables not explicitly 

considered (e.g., those involving stocking rates and farming intensity, soil type, etc.) and the 

fact that conditions that resulted in high loss rates might also result in high attenuation, and 

vice versa. Third, we considered the significance of the fitted coefficients and interpreted these 

as measures of confidence in their representation of the true value of the ETY or ETC. We 

considered that, all other things being equal, significant fitted coefficients were preferable to 

non-significant coefficients and models with greater numbers of significant coefficients were 

preferable to the converse. We also expected that the number of significant coefficients would 

decrease (i.e., p-values would increase) with increasing numbers of predictors (I.e., land 

Types) due to decreasing statistical power.  

For each response variable, we considered that the “best” model represents a trade-off 

between the number of land Types (i.e., the discrimination of variation in land use, climate and 

slope), the R2 value, the consistency of the coefficient values with our prior understanding, 

and the proportion of the parameters that were significant (p < 0.05). We also made the 

judgement a priori that all coefficient values for 50% quantile of the best model must be 

positive. We note that the best model is a judgement that does not mean that other sets of 

Types and their coefficients are not useful or better in some circumstances. In addition, we 

note that given different or updated datasets, different models would be derived. Therefore, 

we declare a “best” model in this study to demonstrate the approach and propose that this be 

regarded as an example and not the only possible model.  
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4.5.4 Objective evaluation of the models 

For each response variable (TN and TP concentrations and yields), we evaluated four aspects 

of the “best” model: (1) the predictive performance compared to criteria for fit metrics, (2) the 

predictive performance compared to alternative frequently used models (3) the ability to 

estimate the 90% confidence interval, and (4) the stability of the fitted coefficients. These 

evaluations were carried out based on independent predictions of the response variables 

made for each water quality station by cross validation. Cross validation was carried out by 

first subdividing the dataset (representing the concentrations and yields at each water quality 

station) randomly into 10 equally sized subsets that are hereafter referred to as “folds”. We 

fitted 10 “realisations” of each model (i.e., of the 0.05, 0.5 and 0.95 quantiles) by excluding 

one fold each time (the held-out fold). We used each of the 10 fitted models to predict the 

response for the associated held-out fold to obtain objective predictions (i.e., predictions for 

water quality stations that were not used in fitting the model) for each quantile and each water 

quality station.  

We evaluated the predictive performance of the “best” model using two statistics: Nash-

Sutcliffe efficiency (NSE), and percent bias (PBIAS). The normalisation associated with NSE 

and PBIAS allows the performance of the models to be compared to criteria proposed by 

Moriasi et al. (2015), outlined in Table 2. 

Table 2. Performance ratings for the measures of model performance used in this study. The 

performance ratings are from Moriasi et al. (2015). 

Performance Rating NSE PBIAS 

Very good NSE > 0.65 |PBIAS| <15 

Good 0.50 < NSE ≤ 0.65 15 ≤ |PBIAS| < 20 

Satisfactory 0.35 < NSE ≤ 0.50 20 ≤ |PBIAS| < 30 

Unsatisfactory NSE ≤ 0.35 |PBIAS| ≥ 30 

 

The second evaluation was a comparison of the NSE and PBIAS for the 0.5 quantile models 

with the same performance statistics achieved for equivalent random forest (RF) models. RF 

is a machine-learning method based on and ensemble of regression trees (Breiman 2001; 

Cutler et al. 2007). Because RF models can include many predictor variables and 

automatically fit non-linear relationships and high-order interactions, they achieve high 

accuracy. This means that RF models are an accepted method of making model-based 

predictions of current river concentrations and yields based on data obtained for water quality 

stations (e.g., Snelder et al. 2020; Whitehead et al. 2021b). RF based models were fitted to 

the same response variable data as used in this study using a large set of predictors 

representing describing various aspects of the climate, topography, geology, land cover, and 

land use of the catchments of the water quality stations (see Whitehead et al. 2021b for 

details). We expected that the RF models would perform better than our 0.5 quantile models 

but note that RF models do not produce interpretable coefficients that can be used as 

parameters in catchment nutrient water quality models. The purpose of the RF models, 

therefore, is to provide a fair benchmark against which to compare model performance. 

The third evaluation was of the estimation of the 90% prediction interval by the 0.05 and 0.95 

quantile models. From the cross-validation outputs we evaluated the proportion of the 

predictions of the median that were less than or greater than the predicted 0.05 and 0.95 

quantiles, respectively (i.e., the proportion of the predictions of the median that fell outside the 
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90% prediction interval). We expected that on average (over the 10 cross validation 

realisations) 10% of the estimates of the median would lie outside of the 90% prediction 

interval.  

The fourth evaluation was of the stability of the fitted coefficients. From the cross-validation 

outputs, we retained the fitted coefficients (i.e., values of 𝛽1, 𝛽2, 𝛽3 … 𝛽𝑚) for each realisation. 

We compared the mean values and the standard deviation of the fitted coefficients over the 

10 realisations to the coefficients and their standard errors estimated for the full models (i.e., 

the models fitted to the entire dataset). We interpreted agreement of the mean and standard 

deviation of the coefficients estimated from the cross validation with their counterparts 

estimated from the full dataset to indicate that collinearity in the predictors was not causing 

sensitivity in the estimated coefficients (i.e., they were stable and reliable).   

We undertook a final evaluation of the plausibility of the fitted model coefficients by comparing 

them to the response variable (TN and TP yields and concentrations) at the water quality 

stations. For each Type we plotted the response variable against the proportion of catchment 

occupied. For each Type, the fitted model coefficient was plotted at the position indicating a 

proportion occupancy of 1. We expected that, for each Type, the fitted model coefficient would 

tend to be consistent with the observed response variables at sites having high occupancy 

(i.e., the fitted coefficients for each Type would be similar to the observed response variables 

in catchments that are dominated by that Type). This expectation is consistent with the 

physical meaning of the fitted model coefficients as the expected proportional contribution of 

each Type to concentration or yield.  

4.6 Application of empirical models  

The empirical models, and their parameters (ETCs and ETYs) may have value as stand-alone 

tools or as supporting adjuncts to traditional process-based models. We undertook a small 

case study to demonstrate how the new empirical models might provide practical and sound 

support for analyses of catchment nutrient management in New Zealand.  We also explored 

using the ETY within a semi-distributed framework with parameter adjustments to better match 

observed yields. We refer to this application as SDEM. The objectives of the work described 

in this section were to demonstrate potential “real-world” applications of the empirical models 

and to identify strengths, limitations, and points of difference across the empirical models and 

SDEM as compared to process-based modelling approaches. 

The Manawatū River basin (Figure 1) was selected as the case study area for our application. 

The Manawatū is characterised by relatively high nutrient levels and a landscape dominated 

by pastoral agriculture. In addition, the Manawatū catchment has many point source 

discharges associated with municipal wastewater treatment plants and factories. There are 

extensive monitoring data available for locations throughout the basin. The basin is well 

studied, including a previous mass balance catchment nutrient modelling study performed by 

the authors of this report (Cox et al. 2022). 
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Figure 2: Manawatū River basin model domain showing the location of water quality 

monitoring stations and point source discharges. Monitoring locations at Manawatū at Upper 

Gorge and Manawatū at Weber Road are highlighted with orange and green triangles, 

respectively. 

For this case study, we applied both yield and concentration empirical models to estimate 

nitrogen yields and concentrations at monitoring stations in the basin. To allow a comparison 

with the modelling work of Cox et al. (2022), we used the land use layer used within that study 

to quantify the proportion of catchment area in each Type for the empirical models.  Other 

typology factors and the methods used to derive the Types were otherwise the same as 

described in section 4.5. Point source contributions were derived following section 4.1.3. The 

Type and point source information for each monitoring station catchment was summarised in 

a spreadsheet and Equation 6 was used to estimate yields and Equation 7 to estimate median 

concentrations at each station. Results were compared to observations of concentration and 

yield from Cox et al. (2022), which were developed following the same methods described in 

section 4.1, but relate to an end year of 2018 (rather than 2020). The locations of the 

monitoring stations in the Manawatū River basin are shown in Figure 2. Performance was 
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evaluated using the performance measures described in section 4.3.1 and by the percentage 

of sites for which the observations lay within the 90% prediction intervals of the models. 

In addition to direct application of the empirical models, we used the ETYs (i.e., regression 

model coefficients) as parameters within a semi-distributed catchment model. A semi-

distributed representation of the Manawatu River basin was defined by sub-dividing the 

catchment into several nested sub-catchments associated with a subset of the monitoring 

stations. Loads from each sub-catchment, estimated from the ETYs were then routed down 

the drainage network. This type of semi-distributed application provides the same results as 

the empirical yield model. However, the structure allows adjustments to the parameter values 

(i.e., ETYs) at the sub-catchment scale to better align with observed instream yields. In our 

application, adjustments to the ETYs were made uniformly across the Types using a single 

adjustment factor for each model sub-catchment to achieve agreement with calculated annual 

loads within ±10% at the 32 monitoring stations. This threshold was subjectively deemed as 

adequate agreement for this exercise and aligns with the approach taken in a previous 

modelling study (Cox et al. 2022). The adjustment process proceeded in an upstream to 

downstream direction. In this way, upstream adjustments were accounted for in the ETY 

adjustments for downstream catchments. We herein refer to this model as the semi-distributed 

empirical model (SDEM). 

We compared the SDEM and empirical yield model predictions to predictions made with a 

previously developed process-based model of the Manawatu River basin (herein referred to 

as HRC-SCAMP). This model was developed for Horizons Regional Council by Cox et al. 

(2022) and uses export coefficients derived from several sources including the Monaghan 

values (Monaghan et al. 2021) for pastoral landuse, Moores et al. (2017) for urban land uses 

and Drewry (2018) and (Bloomer et al. 2020) for horticultural and arable land uses.   

The HRC-SCAMP model was calibrated at 32 monitoring stations (one station which is not 

included in our updated load estimates), based on loads pertaining to an end date of 2018 

(two years earlier than the load estimates described in this report). The HRC-SCAMP model 

attenuation coefficients were quantified as part of a separate calibration exercise by Cox et al. 

(2022) based on the monitoring station data. As the SDEM model used the nested sub-

catchment structure of the SCAMP model, it was also calibrated to the 2018 load estimates.  

This also allowed a direct comparison of the predicted yields between the two models. 

We compared the relative predicted contributions to yield from different sources (land uses 

and point sources) at the monitoring stations between the SDEM model and HRC-SCAMP.  

This was achieved by generating stacked bar charts that display the proportion of yield 

contribution from land uses and point sources for each model. 

The suite of models was used to simulate yields and concentrations under current conditions 

and a set of scenarios. The objective of these simulations was to demonstrate the utility of the 

models for simulating various catchment mitigation actions and to highlight and explain the 

range and variability of predictions produced by the various models.  

The first two scenarios (Scenarios 1 and 1a) incorporate a set of mitigation actions applied to 

pastoral (dairy and sheep/beef) farms, as described by McDowell et al. (2021). The scenarios 

represent full implementation of both “established” and “developing” farm mitigations. We 

applied projected national area-weighted mean reduction values, provided McDowell et al. 

(2021), of 59% and 13%, for dairy and sheep/beef, respectively. All reductions were applied 

as a percent reduction from current values (either export coefficients, ETCs or ETYs), for the 

appropriate land use categories. No other parameters, or point source loads, were modified. 
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Scenario 1 and 1a differed with respect to the assumed spatial extent of mitigation. In Scenario 

1, the mitigation reductions are applied to all pastoral farmland in the Manawatū River basin. 

In Scenario 1a, the mitigation is assumed to occur only in an isolated upper basin sub-

catchment (upstream of the Manawatū River at Weber Road monitoring station) with a single 

downstream assessment point, with respect to mitigation impacts, located approximately in 

the middle of the basin (Manawatū River at Upper Gorge). 

The implementation of scenario 1a for empirical models requires an adjustment to Equation 4 

to accommodate mitigation to a sub-catchment rather than the entire basin. The adjustment 

to Equation 4 is expressed mathematically as: 

𝑍 =  𝛽1𝑃1 × (1 − 𝑚1
𝑃1𝑎𝐴𝑎

𝑃1𝐴
) +  𝛽2𝑃2 × (1 − 𝑚2

𝑃2𝑎𝐴𝑎

𝑃2𝐴
) +  … 𝛽𝑚𝑃𝑚 × (1 − 𝑚𝑚

𝑃𝑚𝑎𝐴𝑎

𝑃𝑚𝐴
) (Equation 8) 

Where Z is the yield or concentration at a specified evaluation point, 𝑃1, 𝑃2, 𝑃3, … 𝑃𝑚 are the 

proportions of catchment area occupied by each Type, 𝛽1, 𝛽2, 𝛽3 … 𝛽𝑚 ETY or ETC values,  m1, 

m2, … mm  are the proportional reductions associated with mitigation for each of the Types, 

𝑃1𝑎 , 𝑃2𝑎, … 𝑃𝑚𝑎 are the area proportions of each Type in the mitigated sub-catchment, A is the 

total catchment area upstream of the evaluation point and Aa is the total area of the mitigated 

sub-catchment.   

The second set of scenarios (Scenarios 2 and 2a) simulated a land use change for 50% of all 

dairy farms to native bush. No other changes were simulated. As above, the difference 

between Scenario 2 and 2a is only the spatial extent of the assumed land use change (full 

basin vs. Weber Road sub-catchment). 

For all scenarios, the predictions are presented as percent changes relative to the model 

predictions for current conditions. For Scenarios 1 and 2, results are presented for all 32 

assessment points distributed throughout the basin. For Scenarios 1a and 2a, as noted above, 

predicted outcomes are presented at a single selected assessment point, roughly located in 

the middle of the basin (Manawatu River at Upper Gorge).  
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5 Results 

5.1 Water quality monitoring station concentrations and instream yields 

Table 3 provides a summary of the total number of water quality monitoring stations used in 

this study, i.e., they met the minimum data requirements for concentration and yield evaluation 

and had a catchment area >10km2, for each of TN and TP. 

Table 3: Summary of water quality monitoring station numbers that met the minimum data 

requirements for calculating concentrations and yields and were used in this study.  

Variable Concentration Yield 

TN 783 315 

TP 763 315 

 

Maps of the locations of water quality monitoring stations for which we evaluated 

concentrations and instream yields are shown in Figure 3 and Figure 4. Cumulative 

distributions of TN and TP concentrations across the water quality monitoring stations are 

shown in Figure 5, and cumulative distributions of instream yields (including uncertainties) are 

shown in Figure 6. The distribution of concentrations and instream yields for both TN and TP 

were approximately log-normal. The uncertainty bounds are generally larger (relatively) for the 

TP instream yield estimates compared to those for TN. 

 

Figure 3: Locations of water quality monitoring stations for median TN and TP concentrations. 

The sites are coloured to indicate the evaluated site median concentrations (mg m-3). 
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Figure 4: Locations of water quality monitoring stations for TN and TP yields. The sites are 

coloured to indicate the evaluated site instream yields, (kg ha-1yr-1). 

 

 

Figure 5: Cumulative distribution of TN and TP concentrations.  See Figure 3 for site locations. 

Note that the y-axis has a log-scale. 
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Figure 6: Cumulative distribution of estimated TN and TP instream yields  See Figure 4 for 

site locations. The error bars indicate the 95% confidence interval for the instream yields. Note 

that the y-axis has a log-scale. 

5.2 Between typology comparison of catchment average export coefficients 

5.2.1 Mapped catchment average TN export coefficients 

There are similarities in the overall distribution of high and low TN CAECs estimates across 

all three typologies (Figure 7). The largest values occurred in intensively farmed areas such 

as western Taranaki, northern Waikato, Canterbury plains and southern Southland. The 

smallest values occurred in South Island hill country and moderate values in the North Island 

east coast.  

The largest absolute differences in TN CAECs between Monaghan and LWP/Bright were on 

the Canterbury plains (Figure 8). There were also some systematic differences, such as 

Monaghan consistently having higher values in Taranaki and the North Island east coast, and 

LWP/Bright having higher estimates in Manawatu. Srinivasan CAECs were consistently lower 

than the CAECs associated with the other two typologies across the North Island. Srinivasan 

CAECs were higher for the South Island hill country relative to the CAECs associated with 

both other typologies. 
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Figure 7: Maps of river network indicating estimates of upstream catchment average TN export coefficients (CAECs) for each typology. Network 

segments are not coloured when less than 50% of the upstream area is covered by the typology, or when the upstream area is less than 

10 km2. 

 

 

Srinivasan Monaghan LWP/Bright 
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Figure 8: Maps of river network indicating differences in estimates of catchment average TN export coefficients (CAECs) between pairs of 

typologies. Streams are not coloured when less than 50% of the upstream area is covered by one or more of the pairs of typologies, or when 

the upstream area is less than 10 km2. 
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minus 
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5.2.2 Catchment average TN export coefficients at monitoring stations 

Of the 315 unique monitoring stations with observed TN instream yields, TN CAECs could be 

estimated based on more than 50% of the upstream area covered by the typology (see section 

4.2) for 149, 220 and 315 sites for the Monaghan, LWP/Bright, Srinivasan typologies.  

Scatter plots of the CAECs for each pair of typologies are shown in Figure 9. Overall, the 

consistency between the TN CAECs was highest between LWP/Bright and Monaghan, with a 

NSE of 0.84 and minimal bias. However, the characteristic difference in the CAECs between 

these two typologies, as quantified by RMSD, was 4.11 kg ha-1 (Table 4).  As the median 

CAEC for the monitoring station catchments was 12kg TN ha-1 yr-1, this between typology 

difference in estimates represents a characteristic uncertainty of 33%.  Monaghan and 

Srinivasan were the most strongly correlated (R2 = 0.86); however, there was a systematic 

difference between these two typologies, as quantified by a bias of 3.72 kg ha-1 yr-1, with 

Monaghan estimating larger CAECs than those estimated by Srinivasan (Table 4). 

 

Figure 9: Scatter plot showing monitoring station TN CAECs calculated using alternative 

typologies. Only shown for sites with >50% upstream area covered by both typoloies.  Red 

line is 1:1 

Table 4: Performance statistics describing the consistency between estimates of TN CAECs 

for each pair of typologies. 

Typology 1 Typology 2 N R2 NSE Bias PBIAS RMSD 

LWP/Bright Monaghan 149 0.84 0.84 0.30 1.76 4.11 

LWP/Bright Srinivasan 220 0.77 0.53 -3.12 -26.11 4.95 

Srinivasan Monaghan 149 0.86 0.70 3.72 21.82 5.51 

 

5.2.3 Mapped catchment average TP export coefficients 

The difference between the TP CAECs (Figure 10, panel 3) demonstrates that the Monaghan 

estimates are generally higher than those from Srinivasan for almost all the north island (apart 

from Taranaki). South Island estimates are more similar, with the exception of Srinivasan 

estimating much higher TP CAECs for northern high-country areas. Note, TP export 

coefficients are not provided with the LWP/Bright, so results are only presented for Monaghan 

and Srinivasan. 



 

 Page 48 of 106 

   

Figure 10: Maps of river network indicating estimates of catchment average TP export coefficients (CAECs) derived from each typology (first 

two plots).  The furthest right plot shows the difference between first two plots. Streams are not coloured when less than 50% of the upstream 

area is covered by the typology, or when the upstream area is less than 10km2. 
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5.2.4 Catchment average TP export coefficients at monitoring stations 

Of the 315 unique monitoring locations, TP CAECs could be estimated based on more than 

50% of the upstream area defined by the typology for 149 and 315 sites for Monaghan, and 

Srinivasan, respectively. Note that TP export coefficients are not provided with the LWP/Bright 

typology.  

Figure 11 shows a scatter plot of the estimated TP CAECs for Srinivasan and Monaghan. 

Performance statistics describing the consistency between Srinivasan and Monaghan are 

provided in Table 5. Overall the agreement between the typology CAECs was low, with R2 of 

0.34,NSE of 0.25 and RMSD of 0.4 kg TP ha-1 yr-1. As the median CAEC for the monitoring 

station catchments was 0.62 kg TP ha-1 yr-1, this between typology difference in estimates 

represents a characteristic uncertainty of 66%. There was a systematic difference in the TP 

CAECs between these typologies as quantified by a bias of 0.13 kg ha-1 yr-1, with Monaghan 

greater than Srinivasan. 

 

Figure 11: Scatter plot of estimated monitoring station TP CAECs between Srinvasan and 

Monaghan . Only for shown for sites with >50% upstream area covered by both typologies.  

Red line is 1:1 

Table 5: Performance statistics describing the consistency in estimated TP CAECs between 

Srinivasan and Monaghan. 

Dataset 1 Dataset 2 N R2 NSE Bias PBIAS RMSD 

Srinivasan Monaghan 149 0.34 0.25 0.13 15.1 0.39 

 

5.3 Comparison of typology CAECs with instream yields and estimation of 
attenuation coefficients 

5.3.1 TN CAECs and instream yields 

Between 20-21% of all source yields (CAECs plus point sources) were evaluated to be less 

than the observed instream yield (above the black line in Figure 12).  Even accounting for the 

instream yield uncertainty and excluding sites with less than 50% upstream area defined by 



 

 Page 50 of 106 

the typology, 9%, 7% and 21% of sites had source yields that were less than the lower 

confidence interval of the instream yields, for LWP/Bright, Monaghan and Srinivasan, 

respectively.   

 

Figure 12: Scatter plot of instream TN yield versus typology TN catchment average export 

coefficients plus point source contributions.  Black line is 1:1.  The error bars indicate the 

instream yield uncertainty (95% confidence interval). 

5.3.2 TN attenuation coefficients 

As well as 20-21% of all attenuation coefficients being evaluated to be less than zero, 

uncertainties in the evaluated TN attenuation coefficients were variable and moderately wide 

in relation to the expected feasible range (Figure 13).  50% of TN attenuation coefficients had 

uncertainty ranges that were larger than 0.17,0.18 and 0.22 for LWP/Bright, Monaghan and 

Srinivasan, respectively.  11%, 12% and 18% of TN attenuation coefficients had uncertainty 

ranges that were larger than 0.5 for LWP/Bright, Monaghan and Srinivasan, respectively.   

 

Figure 13: Cumulative distributions of evaluated TN attenuation coefficients (and their 

uncertainties) for each of the three typologies.  The error bars indicate the uncertainty (95% 

confidence interval) for the attenuation coefficient associated with calculated instream yield 

uncertainty. 

The spatial distribution of TN attenuation coefficients and the distribution of those that were 

evaluated to be negative, did not appear to have immediately obvious spatial patterns (Figure 
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14). This result may have come about due to underestimation of typology export coefficients, 

or issues with the instream yield estimate.   

 

Figure 14: Maps of estimated TN attenuation coefficients. Sites shown with green dots had 

negative attenuation coefficients. 

Spatial patterns in the calculated TN attenuation coefficients were explored by plotting these 

values against the proportion of catchment area occupied by the four most well occupied land 

land use categories (Figure 15). The plots indicate that there is a relationship between the 

probability that attenuation coefficients are negative, and the proportion of upstream 

catchment occupied by the native or forestry land use category.  This suggests that the export 

coefficients for these land uses are systematically underestimated by all typologies (Natural 

with an export coefficient of 2 kg TN ha-1 yr-1 and Forestry 4 kg TN ha-1 yr-1).  We note that the 

Natural export coefficient is only derived from Srinivasan (and was used to infill losses for this 

land use for both other typologies).  Similarly, the Forestry land use export coefficient used in 

the Monaghan CAEC estimates is derived from Srinivasan and is the same as the value used 

in LWP/Bright. 
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Figure 15: Scatter plots of evaluated TN attenuation coefficients compared to the proportion 

of upstream catchment occupied by differing land use categories. Coloured lines are linear 

quantile regressions of the median (red) and 10% and 90% quantiles (blue).  

5.3.3 TP CAECs and instream yields 

In the analysis for TP, we found that the estimated point sources were greater than the 

observed instream loads at 3 sites. We excluded these three sites from the following analysis. 

For Monaghan and Srinivasan, 30% and 35% of all source yields (CAECs plus point sources) 

were evaluated to be less than the instream yields, respectively (above the black line in Figure 

12). Even accounting for the instream yield uncertainty and excluding sites with less than 50% 

upstream area defined by the typology, 12% and 19% of sites had source yields that were 

less than the lower confidence interval of the instream yields for Monaghan and Srinivasan, 

respectively. 
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Figure 16: Scatter plot of instream TP yield versus typology TP catchment average export 

coefficients plus point source yields.  Black line is 1:1.  The error bars indicate the instream 

yield uncertainty (95% confidence interval). 

5.3.4 TP attenuation coefficients 

As well as 30% (Monaghan) and 35% (Srinivasan) of all attenuation coefficients evaluated to 

be less than zero, uncertainties in the evaluated TP attenuation coefficients were variable and 

wide in relation to the expected feasible range (Figure 17). 50% of TP attenuation coefficients 

had uncertainty ranges that were larger than 0.42, and 0.43 for Monaghan and Srinivasan, 

respectively.  43% of TP attenuation coefficients had uncertainty ranges that were larger than 

0.5 for both Monaghan and Srinivasan.  We also note that the uncertainty estimates of the 

attenuation coefficients are generally very wide, and typically larger than for the TN attenuation 

coefficients. 

 

Figure 17: Cumulative distributions of evaluated TP attenuation coefficients (and their 

uncertainties) for the Monaghan and Srinivasan typologies. 
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The spatial distribution of TP attenuation coefficients and the distribution of those that were 

evaluated to be negative, did not appear to have immediately obvious patterns, although 

Manawatu and Taranaki did have very large proportions of negative coefficients (Figure 18). 

This result may have come about due to underestimation of typology export coefficients, or 

issues (particularly underestimation) with the instream yield estimate.  

 

Figure 18: Maps of estimated TP attenuation coefficients. Sites shown with green dots had 

negative attenuation coefficients. 

Spatial patterns in the calculated TP attenuation coefficients were explored by plotting these 

values against the proportion of catchment area occupied by the four most well occupied land 

land use categories (Figure 19). The relationships in these plots are less clear than the same 

plots for TN, although there are weak relationships that suggest TP export coefficients are 

underestimated for areas occupied by native land cover.  Underestimation of diffuse TP loss 

rates may be because P export coefficients, particularly when derived from OVERSEER, may 

be missing a significant portion of the total P export associated with infrequent, but largescale, 

erosion events  (Parfitt et al. 2007, 2013; Gray et al. 2016).   
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Figure 19: Scatter plots of evaluated TP attenuation coefficients against proportion of 

upstream land uses. Coloured lines are linear quantile regressions of the median (red) and 

10% and 90% quantiles (blue). 
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5.4 Empirical Type concentration for TN 

The median TN concentrations (model response) for the 778 sites were not normally 

distributed (right skewed), justifying the use of quantile regression (Figure 5). The proportion 

of significant fitted coefficient values decreased with increasing numbers of predictors for 

models pertaining to all three quantiles (i.e., median (0.5 quantile), 0.05 and 0.95 quantiles; 

Figure 20). There was also a trend in negative fitted coefficient values as the number of 

predictors included in the models increased (Figure 20).  

 

 

Figure 20. Proportion of significant coefficients versus number of predictors for quantile 

models for TN concentration fitted to nine sets of predictors (Types) for models pertaining to 

the 0.05, 0.5, and 0.95 quantiles.  The numbers beside each point indicate the model number 

(1 to 9).  

From nine potential quantile regression models, we judged Model 6 to be the best (see Table 

15 in Appendix B). Quantile regression model 6 included 15 Types (excluding the Bare and 
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Water Types) for which, 53%, 73% and 60% of the fitted parameters were significant for the 

0.05, 0.5, and 0.95 quantile models. There were no negative coefficients for the 0.5 and 0.95 

quantile models and two negative coefficients for the 0.05 quantile model (Figure 21). The 

OLS models that included the same predictors as the quantile regression models had R2 

values between 62% (Model 1) to 67% (Model 9). The OLS model that had the same predictors 

as the Model 6 (the best model) had an R2 value of 66%.  

The fitted coefficients for Model 6 were generally consistent with expectations (see Section 

4.5.3, Figure 21 and Table 6). For example, the highest values were associated with Cropland, 

Dairy and Sheep & Beef land uses, and the lowest values were associated with Natural land 

cover. The values for Forestry, compared with, for example, Sheep & Beef were higher than 

indicated by existing lookup tables and typologies. The standard errors for the fitted 

coefficients were largest for the Orchard & Vineyard land Type, which is consistent with the 

low occupancy of this land Type in our dataset.  

 

Figure 21. Fitted coefficients for the best TN concentration model (Model 6). Note that the y-

axis is transformed to provide greater resolution of values with low magnitudes compared to 

higher magnitudes. The error bars indicate the standard errors for the fitted coefficients. 
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Table 6. ETC parameters for each of the 17 Types derived from the best empirical TN 

concentration model. The values can be interpreted as the contribution of each Type to 

catchment TN concentration (mg m-3). Note that the Types Bare and Water were excluded 

from the regression model and are assumed to have ETC values of zero. 

Type Best estimate 
Prediction interval 

lower bound 
Prediction interval 

Upper bound 

Bare 0 0 0 

Cropland 4464 759 22771 

Dairy_Dry 6130 1856 5636 

Dairy_Irrigated 6311 1422 13496 

Dairy_Moist 2513 1580 4124 

Dairy_Wet 1170 503 1338 

Forestry_Dry 1272 402 3290 

Forestry_Wet 237 154 771 

Natural_Dry 110 -71 334 

Natual_Wet 46 -4 111 

OrchardVineyard 1102 318 11728 

SheepBeef_Dry_Flat 314 31 4352 

SheepBeef_Dry_Hill 183 86 232 

SheepBeef_Wet_Flat 1193 526 4226 

SheepBeef_Wet_Hill 477 143 1126 

Urban 1368 584 1388 

Water 0 0 0 

 

The best empirical TN concentration model had good performance (0.50 < NSE ≤ 0.65; Table 

2) based on the cross-validation analysis and the criteria of Moriasi et al. (2015; Table 8, 

Figure 22). The performance of the RF model was very good (NSE > 0.65; Table 2) based on 

the same criteria, which indicates the predictions of the empirical model are good compared 

to this benchmark. The mean of the proportion of predictions that were within the 90% 

prediction interval over the 10 cross validation folds was 88% (range 83% to 95%). This 

indicates that the 90% prediction interval is a reliable measure of the uncertainty of the 

empirical TN concentration model predictions.  

Table 7. Performance of the best empirical model and RF models of TN concentration.  

Model NSE PBIAS 

Empirical (best estimate) 0.63 -0.6 

RF 0.78 1.44 

 



 

 Page 59 of 106 

 

 

Figure 22. Observed versus predicted site median TN concentrations (points) and 90% 

prediction interval (grey error bars). The predictions and the estimated 90% prediction interval 

are independently derived for each water quality station by the cross validation. The green 

points indicate the observations that are within the 90% prediction interval and the red points 

indicate the observations that are outside of the 90% prediction interval. Note that the 

observed values are plotted on the Y-axis and predicted values on the X-axis, following Piñeiro 

et al. (2008). Red line: one-to-one line. 
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The mean of each of the coefficient values for each quantile (i.e., 5th, 50th and 95th quantiles) 

over the 10 versions of the best model fitted by cross validation were generally consistent with 

the fitted coefficients for the full models as indicated by points lying close to the one-to-one 

line in Figure 23. In addition, the standard deviations of the coefficient values over the 10 

realisations of the models fitted by cross validation were approximately equal to the 

corresponding standard errors (see also Figure 23) for the fitted coefficients for the full model. 

This is an objective indication of the stability and reliability of the fitted parameters.  

 

Figure 23. Comparison of coefficients fitted to each Type in the full TN concentration model 

with the mean of 10 realisations of the same coefficients fitted by cross validation. The vertical 

error bars indicate the standard deviation of the coefficients over the 10 cross validation folds. 

The horizontal error bars are the standard errors of the coefficients fitted in the full models. 

The red dashed line is one to one and indicates perfect agreement. 

Finally, for each Type, the fitted model coefficients were reasonably consistent with the 

observations of TN concentrations at the water quality stations having high occupancy by that 

Type (Figure 24). For some Types, the data did not include many or any water quality stations 

with high (e.g., >0.7) occupancy. However, for some Types there was good representation by 

sites with high occupancy (e.g., Natural_Wet, Urban, SheepBeef_Wet_Hill, 

SheepBeef_Dry_Hill). In these cases, as the proportion occupancy increased, the central 

tendency of the observed TN concentrations converged on the fitted model coefficients (Figure 

24). In addition, where there was not good representation by sites with high occupancy, the 

fitted coefficients were generally consistent with the extrapolated value of trend lines (red lines, 

Figure 24) fitted to the data. 
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Figure 24. Observed TN concentrations versus the proportion of catchment occupied by 

each Type (panels).  For each Type, the ETC values for the best model are indicated as a 

blue dot at the position on the x-axis indicating a proportion occupancy of 1. The red line is a 

linear regression indicating the expected value of TN concentration conditional on the 

proportion of catchment occupied by the Type. Note that the Types Bare and Water were 

excluded from the regression model and are assumed to have ETC values of zero.  
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5.5 Empirical Type yield for TN 

The median TN yields (model response) for the 314 sites were not normally distributed (right 

skewed), justifying the use of quantile regression (Figure 6). The proportion of significant fitted 

coefficient values decreased with increasing numbers of predictors for models pertaining to all 

three quantiles (i.e., 0.5, 0.05 and 0.95 quantiles; Figure 25). For the 0.5 quantile (i.e., median) 

models, only Models 1 and 2 had no negative fitted coefficient values (Figure 25).  

 

Figure 25. Proportion of significant coefficients versus number of predictors for quantile 

models for TN yield models fitted to nine sets of predictors (Types) for models pertaining to 

the 0.05, 0.5, and 0.95 quantiles. The numbers beside each point indicate the model number 

(1 to 9).  

From the nine sets of possible models, we judged the Model 2 to be the best. For Model 2 

there were no negative coefficients for the 0.5 quantile model and only one negative coefficient 

for the 0.05 and 0.95 quantile models. Model 2 comprised 11 Types (excluding the Bare and 

Water Types) for which, 36%, 73% and 64% of the fitted parameters were significant for the 
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0.05, 0.5 and 0.95 quantile models. The OLS models that included the same predictors as the 

quantile regression models had R2 values between 39% (Model 1) to 62% (Model 9). The OLS 

model that had the same predictors as Model 2 (the best model) had an R2 value of 40%. 

The fitted coefficients for the Model 2 were generally consistent with expectations (see Section 

4.5.3, Figure 26 and Table 8). For example, the highest values were associated with Dairy, 

followed by Orchard & Vineyard and Sheep & Beef land uses and the lowest values were 

associated with Natural. The coefficient for Dairy were highest in the wet and irrigated moisture 

Types, which is consistent with expectations. We considered that lower losses for hill Sheep 

& Beef compared to flat is consistent with the expectation that the former Type is generally 

occupied by lower intensity farm systems. The values for Forestry, compared with, for 

example, Sheep & Beef were higher than indicated by existing published lookup tables of 

typology-based export coefficients. We consider that this may be a realistic representation of 

losses from forestry considering that the derived coefficient will represent the contribution of 

various stages of the forestry growth and harvesting cycle, not just the contribution from 

mature trees. The standard errors for the fitted coefficients were largest for the Orchard & 

Vineyard followed by Cropland Types, which is consistent with the low occupancy of these 

Types in our dataset and may also reflect variation of land management within these Types 

(e.g., intensive market gardens vs arable).  

 

Figure 26. Fitted coefficients for the best TN yield model (Model 2). Note that the y-axis is 

transformed to provide greater resolution of values with low magnitudes compared to higher 

magnitudes. The error bars indicate the standard errors for the fitted coefficients.   



 

 Page 64 of 106 

Table 8. ETY parameters for each of the 13 Types derived from the best empirical TN yield 

model. The values can be interpreted as the contribution of each Type to catchment TN yield 

(kg ha-1 yr-1). Note that the Types Bare and Water were excluded from the regression model 

and are assumed to have ETY values of zero. 

Type Best estimate 
Prediction interval 

lower bound 
Prediction interval 

upper bound 

Bare 0 0 0 

Cropland 4.9 4 84.9 

Dairy_Dry 28.5 10.2 41.5 

Dairy_Irrigated 29.6 6.6 65.4 

Dairy_Moist 17 15.9 47 

Dairy_Wet 37.5 31.3 64.1 

Forestry 8.5 4.4 27 

Natural 2.4 1.4 6.6 

OrchardVineyard 18.6 8.7 -45.8 

SheepBeef_Flat 8.3 0.4 18.7 

SheepBeef_Hill 3.9 0.2 12 

Urban 10.7 -7.9 6.8 

Water 0 0 0 

 

The best TN yield model (Model 2) had satisfactory performance (0.35 < NSE ≤ 0.50; Table 

2) based on the cross-validation analysis and the criteria of Moriasi et al. (2015; Table 8, 

Figure 22). The performance of the RF model was very good (NSE > 0.65; Table 2) based on 

the same criteria, which indicates the predictions of the 0.5 quantile model are fair compared 

to this benchmark. The mean of the proportion of predictions that were within the 90% 

prediction interval over the 10 cross validation folds was 86% (range 74% to 93%). This 

indicates that the 90% prediction interval is a reliable measure of the uncertainty of the 

empirical TN yield model predictions.  

Table 9. Performance of the 0.5 quantile and RF models of TN yield.  

Model NSE PBIAS 

Empirical (best estimate) 0.36 -4.7 

RF 0.72 -0.8 
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Figure 27. Observed versus predicted site median TN yield (points) and 90% prediction 

interval (grey error bars). The predictions and the estimated 90% confidence interval are 

independently derived for each water quality station by the cross validation. The green points 

indicate the observations that are within the 90% prediction interval and the red points indicate 

the observations that are outside of the 90% prediction interval. Note that the observed values 

are plotted on the Y-axis and predicted values on the X-axis, following Piñeiro et al. (2008). 

Red line: one-to-one line. 
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The mean of each of the coefficient values for each quantile (i.e., 0.05, 0.5 and 0.95 quantiles) 

over the 10 versions of the best model fitted by cross validation were generally consistent with 

the fitted coefficients for the full models as indicated by points lying close to the one-to-one 

line in Figure 28. In addition, the standard deviations of the coefficient values over the 10 

realisations of the models fitted by cross validation were approximately equal to the 

corresponding standard errors (see also Figure 28) for the fitted coefficients for the full model. 

This is an objective indication of the stability and reliability of the fitted parameters.  

 

 

Figure 28. Comparison of coefficients fitted to each land Type in the full TN yield model with 

the mean of 10 realisations of the same coefficients fitted by cross validation. The vertical error 

bars indicate the standard deviation of the coefficients over the 10 cross validation folds. The 

horizontal error bars are the standard errors of the coefficients fitted in the full models. The 

red dashed line is one to one and indicates perfect agreement. 

Finally, for each Type, the fitted model coefficients were reasonably consistent with the 
observations of TN yields at the water quality stations having high occupancy by that Type 
(Figure 30). For some Types, the data did not include many or any water quality stations with 
high (e.g., >0.7) occupancy. However, for some Types there was good representation by 
sites with high occupancy (e.g., Natural, Urban, SheepBeef_Hill). In these cases, as the 
proportion occupancy increased, the central tendency of the observed TN yields converged 
on the fitted model coefficients (Figure 30). In addition, where there was not good 
representation by sites with high occupancy, the fitted coefficients were generally consistent 
with the extrapolated value of trend lines (red lines, Figure 30) fitted to the data.   
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Figure 29. Observed TN yields versus the proportion of catchment occupied by each Type 

(panels).  For each Type, the ETY values for the best model are indicated as a blue dot at the 

position on the x-axis indicating a proportion occupancy of 1. The red line is a linear regression 

indicating the expected value of TN yield conditional on the proportion of catchment occupied 

by the Type. Note that the Types Bare and Water were excluded from the regression model 

and are assumed to have ETY values of zero. 
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5.6 Empirical Type concentration for TP 

The median TP concentrations (model response) for the 749 sites were not normally 

distributed (right skewed), justifying the use of quantile regression (Figure 5). The proportion 

of fitted coefficient values that were significant decreased with increasing numbers of 

predictors for models pertaining to all three quantiles (i.e., 0.05, 0.5 and 0.95 quantiles; Figure 

30). There were negative fitted coefficient values in all of the models (Figure 20). All models 

contained the land Types Bare and Water and these were always associated with negative 

coefficients.  

 

Figure 30. Proportion of significant coefficients versus number of predictors for quantile 

models for TP concentration fitted to nine sets of predictors (Types) for models pertaining to 

the 0.05, 0.5, and 0.95 quantiles.  The numbers beside each point indicate the model number 

(1 to 9).  

From the nine models, we judged Model 2 to be the best. This implies an acceptance of the 

negative coefficients fitted to the Bare and Water land Types. The negative contribution of the 
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Water may have some physical justification in terms of trapping of TP in impoundments. 

However, the negative coefficient for Bare has no obvious physical justification. The model 

pertaining to Set 2 (i.e., the best model) comprised 13 land Types for which, 46%, 62% and 

46% of the fitted coefficients were significant for the 0.05, 0.5, and 0.95 quantile models 

(Figure 31). The OLS models that included the same predictors as the quantile regression 

models had R2 values between 32% (Model 1) to 50% (Model 9). The OLS model that had the 

same predictors as Model 2 (the best model) had an R2value of 39%. 

The fitted coefficients representing the unit contributions of the Types to TP concentrations 

(Figure 31 and Table 10) were inconsistent with expectations. For example, for the 0.5 quantile 

model, the coefficients associated with Dairy ranged between 174 (Dairy_Dry; Table 10) and 

10 (Dairy_Irrigated; Table 10). This is a large variation within the Dairy land use category for 

which we have no physical justification. In addition, the coefficient associated with Natural was 

7 however, the coefficients for Dairy_Irrigated and SheepBeef_Wet_Flat were also very low 

10, and 1, respectively (Table 10). We have no physical justification for lower TP contributions 

by productive land uses compared to natural state (i.e., Natural land cover). We consider this 

is because our simple Types do not discriminate variation in important natural processes that 

determine P concentrations including geogenic geogenic supply, mobilisation (erodibility, 

rainfall slope etc) and microbially mediated reduction-oxidation, which we discuss in our 

conclusions.  

Table 10. ETC parameters for each of the 13 Types derived from the best empirical TP 

concentration model. The values can be interpreted as the contribution of each Type to 

catchment TP concentration (mg m-3).  

Type Best estimate 
Prediction interval 

lower bound 
Prediction interval 

upper bound 

Bare -22 -14 -19 

Cropland 19 7 1117 

Dairy_Dry 174 85 564 

Dairy_Irrigated 10 9 138 

Dairy_Moist 130 61 287 

Dairy_Wet 17 -17 54 

Forestry 31 10 92 

Natural 7 3 21 

OrchardVineyard 45 17 44 

SheepBeef_Flat 1 2 -11 

SheepBeef_Hill 33 5 82 

Urban 55 45 70 

Water -18 -7 162 
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Figure 31. Fitted coefficients for the best TP concentration model (Model 5). Note that the y-

axis is transformed to provide greater resolution of values with low magnitudes compared to 

higher magnitudes. The error bars indicate the standard errors for the fitted coefficients. 

 

The best TP concentration model (Model 2) had unsatisfactory performance (NSE < 0.35; 

Table 2) based on the cross-validation analysis and the criteria of Moriasi et al. (2015; Table 

11, Figure 32). The performance of the RF model was very good based on the same criteria, 

which indicates the predictions of the 0.5 quantile model are poor compared to this benchmark. 

The mean of the proportion of predictions that were within the 90% prediction interval over the 

10 cross validation folds was 12.7% and the 95% prediction interval extended between 8% 

and 17% (i.e., contained the expected proportion of 10%). This indicates that the 90% 

prediction interval is a reliable measure of the imprecision of the quantile regression model 

predictions.  

Table 11. Performance of the 0.5 quantile and RF models of TP concentration.  

Model NSE PBIAS 

0.5 quantile 0.30 0.3 

RF 0.68 0.13 
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Figure 32. Observed versus predicted site median TP concentrations (points) and 90% 

prediction interval (grey error bars). The predictions and the estimated 90% prediction interval 

are independently derived for each water quality station by the cross validation. The green 

points indicate the observations that are within the 90% prediction interval and the red points 

indicate the observations that are outside of the 90% prediction interval. Note that the 

observed values are plotted on the Y-axis and predicted values on the X-axis, following Piñeiro 

et al. (2008). Red line: one-to-one line. 
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The mean of each of the coefficient values for each quantile (i.e., 0.05, 0.5 and 0.95 quantiles) 

over the 10 realisations of the best model fitted by cross validation were consistent with the 

fitted coefficients for the full models as indicated by points lying close to the one-to-one line in 

Figure 33. In addition, the standard deviations of the coefficient values over the 10 realisations 

of the models fitted by cross validation were approximately equal to the corresponding 

standard errors (Figure 33) for the fitted coefficients for the full model. 

 

Figure 33. Comparison of coefficients fitted to each Type in the full TP concentration model 

with the mean of 10 realisations of the same coefficients fitted by cross validation. The vertical 

error bars indicate the standard deviation of the coefficients over the 10 cross validation folds. 

The horizontal error bars are the standard errors of the coefficients fitted in the full models. 

The red dashed line is one to one and indicates perfect agreement. 
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5.7 Empirical Type yield for TP 

The median TP yields (model response) for the 312 sites were not normally distributed (they 

were right skewed), justifying the use of quantile regression (Figure 6). For the TP yield 

models, Sets 1, 2 and 3 comprised between four and six land Types that were combinations 

of climate and slope categories (see Appendix B). Model 4 comprised only the nine land use 

Types. Set 5 and 6 comprised 18 and 19 Types, respectively that were combinations of land 

use, climate and slope categories. The proportion of significant fitted coefficient values 

generally decreased with increasing numbers of predictors for models pertaining to all three 

quantiles (i.e., 0.5, 0.05 and 0.95 quantiles; Figure 34).  

For the 0.5 quantile (i.e., median) models, Models 1, 2, and 3 had no negative fitted coefficient 

values (Figure 34). The OLS model that included the same predictors as Model 4 (which 

comprised the nine land use categories), had an adjusted R2 value of 4%. This indicates that 

the signal of land use Type barely rises above the overall between-site variability in TP yields. 

The maximum R2 values for the OLS model was only 28% indicating that there was 

appreciable unexplained variation in TP yields.  

 

Figure 34. Proportion of significant coefficients versus number of predictors for quantile 

models for TP yield fitted to six sets of predictors (Types) for models pertaining to the 0.05, 

0.5, and 0.95 quantiles. The numbers beside each point indicate the model number (1 to 9).  
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From the six models, we judged the Models 3 to be the best. For Model 3, 50%, 83% and 66% 

of the fitted coefficients were significant for the 0.05, 0.5 and 0.95 quantile models respectively. 

The were no negative coefficients for the 0.05 and 0.5 quantile models and only one negative 

coefficient for the 0.95 quantile model. The OLS model that had the same predictors as Model 

3 had an R2 value of 20%. 

The fitted coefficients for the best model were generally inconsistent with expectations for the 

unit contributions of the land Types to TP yields (Figure 35 and Table 12). For example, the 

coefficients for land Types that comprised the Flat slope category were higher than for the Hill 

slope category, which is inconsistent with the general understanding of P loss being strongly 

influenced by sediment loss which is greater for hilly areas (Sharpley et al. 2001). We consider 

this is because our simple Types do not discriminate variation in important natural processes 

that determine P yields including geogenic geogenic supply, mobilisation (erodibility, rainfall 

slope etc) and microbially mediated reduction-oxidation, which we discuss in our conclusions.  

 

Figure 35. Fitted coefficients for the best TP yield model (Model 3). Note that the y-axis is 

transformed to provide greater resolution of values with low magnitudes compared to higher 

magnitudes. The error bars indicate the standard errors for the fitted coefficients. 
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Table 12. ETY parameters for each of the 6 Types derived from the best empirical TP yield 

model. The values can be interpreted as the contribution of each Type to catchment TP yield 

(kg ha-1 yr-1).  

Type Best estimate 
Prediction interval 

lower bound 

Prediction interval 
upper bound 

Dry_Flat 0.33 0.02 1.28 

Dry_Hill 0.06 0.03 0.68 

Moist_Flat 0.39 0.12 0.85 

Moist_Hill 0.64 0.22 2.73 

Wet_Flat 0.61 0.14 -0.2 

Wet_Hill 0.5 0.12 5.9 

 

The best TP concentration model (Model 3) had unsatisfactory performance (NSE < 0.35; 

Table 2) based on the cross-validation analysis and the criteria of Moriasi et al. (2015; Table 

11, Figure 32). The performance of the RF model was good (0.50 < NSE ≤ 0.65; Table 2) 

based on the same criteria, which indicates the predictions of the 0.5 quantile model are poor 

compared to this benchmark. The mean of the proportion of predictions that were within the 

90% confidence interval over the 10 cross validation folds was 11% and the 95% confidence 

interval extended between 2% and 20% (i.e., contained the expected proportion of 10%). This 

indicates that the 90% confidence interval is a reliable measure of the imprecision of the 

quantile regression model predictions.  

Table 13. Performance of the 0.5 quantile and RF models of TP concentration.  

Model NSE PBIAS 

0.5 quantile 0.19 -3.8 

RF 0.53 2.1 
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Figure 36. Observed versus predicted site median TP yield (points) and 90% prediction 

interval (grey error bars). The predictions and the estimated 90% prediction interval are 

independently derived for each water quality station by the cross validation. The green points 

indicate the observations that are within the 90% prediction interval and the red points indicate 

the observations that are outside of the 90% prediction interval. Note that the observed values 

are plotted on the Y-axis and predicted values on the X-axis, following Piñeiro et al. (2008). 

Red line: one-to-one line. 
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The mean of each of the coefficient values for each quantile (i.e., 0.05, 0.5 and 0.95 quantiles) 

over the 10 versions of the best model fitted by cross validation were generally consistent with 

the fitted coefficients for the full models as indicated by points lying close to the one-to-one 

line in Figure 28. In addition, the standard deviations of the coefficient values over the 10 

realisations of the models fitted by cross validation were approximately equal to the 

corresponding standard errors (see also Figure 28) for the fitted coefficients for the full model. 

This is an objective indication of the stability and reliability of the fitted parameters.  

 

Figure 37. Comparison of coefficients fitted to each Type in the full TP yield model with the 

mean of 10 realisations of the same coefficients fitted by cross validation. The vertical error 

bars indicate the standard deviation of the coefficients over the 10 cross validation folds. The 

horizontal error bars are the standard errors of the coefficients fitted in the full models. The 

red dashed line is one to one and indicates perfect agreement. 
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5.8 Empirical model application 

Direct application of the empirical concentration model to the Manawatū River basin resulted 

in agreement, within ±10%, between predicted and measured instream concentrations at six 

of thirty-two (19%) monitoring stations. For the empirical yield model, eleven of thirty-two 

(34%) predictions achieved ±10% agreement with measured instream yields. Scatter plots of 

observations versus predictions for the empirical models are shown in Figure 38 and Figure 

39,. Figure 38 indicates a consistent over prediction by the empirical concentration model (i.e., 

negative bias). This is confirmed by the calculated PBIAS value for the empirical concentration 

model (-29%) (Table 13). Both the NSE (reproducing observations) and PBIAS (bias) metrics 

indicate an “unsatisfactory” performance rating (Table 3) for this application of the empirical 

concentration model. The empirical yield model achieved a “satisfactory” rating for NSE and 

a “very good” rating for PBIAS.  

Table 14. TN empirical model performance summary for Manawatū River basin. Bias and 

RMSD are in units of mg m-3 and kg ha-1yr-1 for concentration and yield, respectively. 

Empirical Model Proportion of predictions 
within the 90% PI 

R2 NSE Bias PBIAS RMSD 

Concentration 84% 0.13 -1.7 -210 -29% 486  

Yield  97% 0.55 0.47 0.25 2.6% 2.8 

 

 

Figure 38. Observations versus empirical concentration model predictions of median TN 

concentration for sites within the Manawatu basin. The green points indicate the observations 

that are within the 90% prediction interval (grey error bars) and the red points indicate the 

observations that are outside of the 90% prediction interval. Note that the observed values are 

plotted on the Y-axis and predicted values on the X-axis, following Piñeiro et al. (2008). Red 

line: one-to-one line. 
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Figure 39. Observations versus empirical yield model predictions of TN yield for sites within 

the Manawatu basin. The green points indicate the observations that are within the 90% 

prediction interval (grey error bars) and the red points indicate the observations that are 

outside of the 90% prediction interval. Note that the observed values are plotted on the Y-axis 

and predicted values on the X-axis, following Piñeiro et al. (2008). Red line: one-to-one line. 

 

The adjustment factors applied to the SDEM of the Manawatū River basin are shown in Figure 

40. The SDEM appeared to perform best for mainstem Manawatū River sub-catchments, 

compared to lower order streams. Minimal (if any) adjustments of the national scale parameter 

set, applied to sub-catchments, were required to achieve acceptable agreement with 

measured loads at mainstem monitoring stations. Lower order tributaries of the mainstem 

typically required larger adjustments, with consistent over-predictions in the north and under-

predictions in the south and east.  
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Figure 40: Adjustment factors applied to the SDEM of the Manawatu River basin. Grey 

boundaries indicate sub-catchments used in the model. Black dots are monitoring stations. 

Results using the SDEM indicate significantly higher contributions from dairy, compared to 

HRC-SCAMP, and significantly lower contributions from sheep and beef (Figure 41). The 

SDEM also indicates larger contributions from forestry and native bush compared to the 

SCAMP model. 

The scenario results are summarised in Table 14, for a single mid-basin assessment point, 

and Figure 42, for the entire basin (Scenarios 1 and 2 only). Results show generally close 

agreement in relative change predictions for the three new models presented here. The HRC-

SCAMP model predicts smaller changes for all scenarios.  
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Figure 41. Comparison of modelled TN source yield percentage contributions for the 

Manawatū River basin between the SDEM and HRC-SCAMP models. 

Table 14. Scenario simulation results for the Manawatū River at Upper Gorge monitoring 

station. All values represent percent changes from baseline in TN yield or median 

concentration. 

Scenario 
Empirical model 

SDEM  HRC-SCAMP 
Concentration Yield 

Scenario 1. -33% -35% -33% -29% 

Scenario 1a.  -5.30% -5.00% -4.90% -4.70% 

Scenario 2 -23% -23% -23% -17% 

Scenario 2a.  -3.10% -2.80% -2.70% -2.20% 
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Figure 42: Estimated changes in yield at monitoring locations in the Manawatū River basin 

for Scenario 1 and Scenario 2, for the empirical yield model, SDEM and HRC-SCAMP.   
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6 Discussion 

6.1 Large differences in catchment TN loads estimated using different 
typologies 

We evaluated the consistency of estimates of catchment average export coefficients (CAECs) 

for both TN and TP that were derived using three alternative typologies. We discuss the 

inconsistencies observed for TP later in this discussion; the following section focuses on TN. 

The three typologies examined in this report (Srinivasan, LWP/Bright and Monaghan) showed 

reasonable agreement with each other in terms of variation in CAECs of TN across the country 

when viewed as national scale maps (Figure 8, Figure 9). Correspondingly, we found 

reasonable correlation in CAECs estimated using all three typologies for TN (R2 ~ 80%, Table 

4). However, we found that estimates based on Srinivasan were systematically lower by 3 – 

4kg TN ha-1 yr-1 than those derived from the other typologies (Table 4). This means that 50% 

of CAECs estimated using Srinivasan are more than 3 – 4kg TN ha-1 yr-1 less than estimates 

made using LWP/Bright and Monaghan. In addition, even for estimates derived from the two 

typologies that were in closest agreement (LWP/Bright and Monaghan), the characteristic 

differences (RMSD) were approximately 4kg TN ha-1 yr-1. This means that for one third of 

catchments, differences in CAECs estimated by any two typologies can be expected to differ 

from each other by at least 4kg TN ha-1 yr-1. Given that 95% of catchments have CAECs <34kg 

TN ha-1 yr-1 and the median is 12kg TN ha-1 yr-1, the differences in estimates associated with 

different typologies are large. Succinctly, this means that there are large uncertainties in 

accounting for sources of N in catchments using any of the three typologies examined by this 

study.  

This study cannot indicate which set of export coefficients (i.e., which typology) is closest to 

the true value or which Types are most incorrect within each typology. Our analysis indicates 

that the TN export coefficients for Forestry and Natural may be too low for all three typologies, 

which is discussed below. At least a portion of the discrepancy between typologies will be 

attributable to differences in how OVERSEER was applied to quantify the export coefficients 

associated with pastoral land. Presumably, there were different input data and assumptions 

made when the OVERSEER model was used to estimate farm loss rates. These differences 

likely include climate and topographic input differences (within a given land Type), as well as 

differences in assumed pasture type, animal type and numbers, and farm management 

practices associated with the representative farms. As for all numerical models, input 

differences, even within plausible ranges, can result in appreciable differences in model 

output. This is typically referred to as model and parameter uncertainty. The results of this 

study suggest that uncertainty in estimated export coefficients may contribute to significant 

uncertainty in estimates of total catchment diffuse source nitrogen loads.  

6.2 Source loads and instream loads are uncertain and therefore so are 
attenuation parameters 

Over 75% of monitoring stations had observed instream yields of less than 10 kg TN ha-1 yr-1 

(Figure 5). This means that the discrepancies in CAECs estimated using different Typologies 

represent substantial uncertainty in calibrated attenuation parameters. For example, consider 

an estimated CAEC of 20 kg TN ha-1 yr-1 with an uncertainty (RMSD) of 4kg TN ha-1 yr-1 (95% 

confidence interval from 12 to 28 kg TN ha-1 yr-1) and an instream yield of 10 kg TN ha-1 yr-1. 

This equates to an attenuation coefficient of 0.5 with a 95% confidence interval of 0.17 to 0.64. 

This range is almost half of the physically possible range of an attenuation coefficient and 

therefore represents considerable uncertainty. We note that this simple estimate of CAEC 
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uncertainty does not consider additional sources of uncertainty that are encountered when 

setting up catchment models such as uncertainties associated with land use mapping. 

Across the monitoring stations, the confidence intervals for TN attenuation coefficients that 

were derived by consideration of only the instream yield uncertainty were also wide (Figure 

13). The width of the TN attenuation coefficient confidence intervals increased as attenuation 

coefficients decreased, due to the nature of Equation 1. Across attenuation coefficients 

calculated for all typologies, 50% had confidence interval widths of 0.18 or larger, 25% had 

widths of 0.3 or larger and 10% had widths of 0.47 or larger. These represent approximately 

20%, 30% and 50% of the physically possible range of an attenuation coefficient (i.e., 0 to 1). 

Therefore, uncertainty associated with instream load estimates represent a considerable 

contribution to the uncertainty of process-based catchment nutrient models. 

Because of both model and parameter uncertainty described above and the uncertainty in 

calculated instream yields, accurately and precisely defining attenuation parameters is 

challenging. The results presented here imply that there is limited ability to detect significant 

spatial differences in attenuation across catchments. This has implications for how water 

quality models are used for decision making. The justification for defining spatially variable 

attenuation coefficients within such catchment models may need to rely largely on expert 

judgement. At the very least, model predictions should be presented with acknowledgement 

of this uncertainty and appropriate cautions regarding the use of the predictions.  

6.3 Underestimation of TN export coefficients for Forestry and Natural land 

Comparisons of the proportion of upstream area in different land use categories with estimated 

TN attenuation coefficients for each typology indicated that there was a pattern of decreasing 

attenuation coefficient with increasing proportions of upstream areas in Forestry or Natural. In 

addition, there was a greater proportion of negative attenuation coefficients for water quality 

stations whose catchments were occupied by more than 50% of either land use, compared to 

those with less than 50%. Negative attenuation coefficients indicate that source loads are less 

than observed instream loads and indicate the aggregate of the export coefficients 

underestimates the true TN diffuse source loss rates. 

In our study, only Srinivasan included Natural as a land use category. We used Srinivasan’s 

export coefficient for Natural by to represent the Natural category in the other two typologies. 

Both Srinivasan and LWP/Bright included an export coefficient for Forestry. Srinivasan has a 

median TN export coefficient for Natural of 2 kg ha-1 yr-1, and a range of 1 - 7.1 kg ha-1 yr-1. 

Srinivasan and LWP/Bright have TN export coefficients of 4 kg ha-1 yr-1 for Forestry, with 

Srinivasan indicating a range of 1 - 28 kg ha-1 yr-1. However, the empirical yield models for TN 

suggest a median TN yield for Forestry of 8.5 kg ha-1 yr-1 (Table 8). It is important to keep in 

mind that our estimates of ETY for Forestry represent the national median value at the scale 

of whole catchments. In addition, areas categorised as Forestry in our study will have 

comprised areas that are at various stages of the growing cycle including areas undergoing 

new planting, thinning and harvesting. Although N concentrations and losses in streams 

whose catchments are dominated by mature planted forests are generally low, losses can be 

considerably higher where forests are established on pasture land (Davis 2014). It is also clear 

that N loss from areas of plantation forest are not constant and that there are times during the 

growing and harvesting cycle when nitrogen leaching is much higher than mature forest 

including fertilisation, planting, thinning and harvesting (Davis 2014; Hughes and Quinn 2019). 

The temporal variation in N loss from Forestry is particularly pronounced in forests planted on 

coastal sands or land that was previously pasture (Davis 2014). The ETY estimates for TN 

yield for Forestry associated with the empirical models are therefore probably representative 



 

 Page 85 of 106 

of losses at the scale of catchments with patches of plantation forestry that are at various 

stages of the growing cycle.  

It is likely that the most effort and best modelling available to characterise export coefficients 

has been focused on the agricultural and horticultural land uses, and in particular pastoral land 

uses. However, catchment models require robust export coefficients associated with other 

land uses including Natural and Forestry because those other land uses make up significant 

proportions of many catchments in New Zealand. For Natural areas, load contributions 

represent unmanageable loads (i.e., land use or land management change are unlikely to 

occur or to cause significant reductions in N loss). Whether the unmanageable load is 10 or 

20% of the total load, for example, has important implications for the load reductions required 

from other land uses to achieve a required catchment load reduction. Underestimation of 

export coefficients from Natural and Forestry will lead to underestimation of calibrated 

attenuation coefficients. We therefore recommend further investigation of losses from Forestry 

and Natural land to help improve accuracy of water quality catchment models. 

6.4 Empirical catchment water quality models are an alternative to process-
based models 

In this study, we developed an alternative class of empirical catchment model for nitrogen (TN) 

concentrations and yields. The empirical model approach provides a direct relationship 

between Types and concentrations and yields and avoids the reliance on uncertain estimates 

of export coefficients that are derived from other sources (e.g., OVERSEER). The empirical 

approach also removes the requirement to calibrate parameters that represent attenuation. In 

other words, empirical models are a more parsimonious alternative to setting up catchment N 

models that may be appropriate for at least some applications. In addition, the empirical 

models allow the user to estimate the 90% prediction interval as an estimate of the imprecision 

of the empirical model predictions for any catchment. This provides a simpler and more 

transparent way to quantify model uncertainty than process-based models.  

The empirical models presented in this report provide simple and easily used tools that can 

be applied at any location within New Zealand. We have developed a dataset that provides 

proportions of catchment area occupied by each Type used by the TN concentration and yield 

models for all segments of the DN2.4 (>10 km2). These data allow estimates of yield or 

concentration to be made at any location in New Zealand very easily. In addition, the data 

could also be used for national- and regional-scale assessments that aim to rapidly assess 

impacts of land use and land management scenarios at any location in New Zealand.  

An important caveat that applies to the empirical models is associated with the national scale 

of the quantile regression models that were used to derive the ETCs and ETYs. Because the 

water quality station data were limited, we were only able to derive robust ETCs and ETYs for 

a limited number of Types. This limits the spatial resolution of the empirical models. In addition, 

as the spatial extent of a modelled domain reduces, the applicability of our ETCs and ETYs.  

will diminish. We note that site-specific adjustments of the nationally-derived parameters may 

be appropriate on a case-by-case basis (i.e., “local calibration”). We also note that the most 

likely applications of this type of model would be in scenario analysis, where the objective may 

not be to evaluate absolute concentrations or yields, but rather to evaluate relative differences 

in these outcomes between scenarios. The accuracy of these relative differences relies on the 

assumption that the relativities between ETC or ETY estimates between Types are relevant 

and applicable for the catchment of interest. We note that testing the validity of these 

assumptions was beyond the scope of this study but would be a useful direction for future 

research. 
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Defining the Types that were included in the empirical models involved expert judgement and 

was strongly influenced by the structure of the Srinivasan et al. (2021) typology. The definition 

of the ‘best’ empirical models was also based on expert judgement, and involved trade-offs 

between the model performance, the proportion of significant parameters, and optimising for 

the total number of Types to allow for greater flexibility for scenarios. Nevertheless, the 

applications presented in this report demonstrate the potential for use of empirical catchment 

water quality (nitrogen) models. Future research or applications could refine the approach, 

potentially with more exhaustive exploration of Type sets (typologies, their factors and their 

categories), incorporating the observation uncertainties into the fitting process, using updated 

observed water quality datasets, and using criteria for defining the “best” model based on 

specific model purpose. 

6.5 The derived empirical models can be used for several types of 
simulation 

This study demonstrates the application of the empirical TN models to several types of 

simulations that are relevant to supporting regional council decision making. Relevant 

simulations include those associated with assessing impacts on water quality associated with 

land use mitigations, setting target attribute states, and assessing allocation regimes for 

nutrients.  

The empirical TN yield model performed satisfactorily in the case study application, with 

performance measures that were similar to that of the national scale model. The empirical 

concentration model did not achieve satisfactory results as measured by the NSE and 

consistently underpredicted stream concentrations, resulting in an unsatisfactory PBIAS 

rating. These results suggest scalability challenges associated with the ETC model as 

compared to the ETY model. We surmise that these complications may be related to 

hydrologic variability and possibly the point source representation within the concentration 

model. Catchment hydrology is complex and plays an important role in determining stream 

contaminant concentrations. Hydrology is only partially represented in the empirical 

concentration model typology (e.g., wet vs. dry). Caution should therefore be exercised when 

applying the empirical concentration model at less than the national scale. This model may be 

best suited for coarse approximations of relative changes in concentration due to land use 

change. 

Compared to the HRC-SCAMP model, the semi-distributed implementation of the empirical 

model (SDEM) estimated that dairy, forestry, and native bush makes a larger contribution to 

catchment TN load and sheep and beef makes a lower contribution to catchment TN load 

(Figure 41). While HRC-SCAMP estimates the largest TN source contribution at the bottom of 

the Manawatū River basin to be sheep and beef farmland, the SDEM suggests that the largest 

load contribution is from dairy farmland. Similarly, estimates of the TN load relative 

contributions from forestry and native bush are higher using the SDEM (5.5%), compared to 

the HRC-SCAMP model (1.5%). The differences have implications for catchment 

management, mitigation strategies and nitrogen management. For example, the results for a 

set of simulations (Scenarios 1 and 2) using the new empirical models show greater water 

quality impacts from changing land use from Dairy to Natural compared to the previously 

developed HRC-SCAMP model. 

The simulated water quality impacts for the scenarios produced with three implementations of 

the empirical models (empirical concentration model, empirical yield model, and SDEM) were 

in close agreement with each other and with HRC-SCAMP (Table 14). These results suggest 

that the three empirical model implementations can be applied with equal confidence for these 
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types of simulations, when the focus is on relative differences (i.e., a percentage change 

between the simulated baseline and a simulated scenario).  

The empirical yield model is amenable to being used in semi-distributed mass balance 

catchment models. Such models allow for mass balance tracking and accounting, and the 

separation of mass and flow rates within a modelling framework. These types of models can 

be used to simulate prescribed changes in mass (e.g., treatment removal options or point 

source modifications) or changes in flow (e.g., climate change forecasting or water use 

projections). Site specific calibration, guided by monitoring data, may be desirable for such 

models as a way of refining spatial variability and reducing bias in the yield parameters. For 

the example presented in this study, the relativity of yields was maintained across Types by 

applying a uniform adjustment rate to all Types within sub-catchments. Conceptually, these 

uniform adjustments represent an assumption that sub-catchment attenuation rates are 

higher, or lower, than those implied by the national parameter set. Such an assumption could 

be supported by knowledge of localised groundwater conditions that support denitrification. 

The empirical models are more parsimonious and transparent than a process model and is, 

in theory, easier to construct and calibrate. An advantage of the empirical models is that they 

are not dependent on externally derived and uncertain export coefficients such as those 

derived using OVERSEER or expert opinion. The empirical concentration model has the 

advantage of directly estimating stream TN concentrations anywhere in the country. Instream 

concentrations, rather than loads, are typically the response variable of concern with respect 

to defined water quality objectives.  

Although the prediction intervals derived using our empirical models are wide, their direct 

derivation from observational data provides an easily estimated quantification of uncertainty 

that is less easily achieved with process-based models. Uncertainties can be derived for 

process-based models but their quantification is more complicated due to the greater number 

of model inputs and components (Semadeni-Davies et al. 2020, 2021). In addition, process-

based models often rely on inputs derived from external models such as OVERSEER for which 

uncertainties are not well quantified (Elliott et al. 2016; Etheridge et al. 2018). 

6.6 Catchment TP models have high uncertainty 

The uncertainty of instream load estimates was generally higher for TP than for TN. This 

occurs because, compared to TN, high TP concentrations are generally associated with high 

flows. When samples are taken punctually and monthly (as is generally the case with SOE 

monitoring) high flow samples are generally sparse and have high variance (Snelder et al., 

2017). Because load is calculated by multiplying concentration and flow, a large component 

of the TP load is associated with high flows. However, the high flow component of the TP load 

is very uncertain due to the sparse data and high variance of TP concentrations associated 

with high flow. Poorly characterised TP loads have flow-on effects with respect to the precision 

of variables calculated based on loads, such as attenuation coefficients and empirical yield 

coefficients. 

Our analysis showed large differences in catchment average TP export coefficients between 

the Srinivasan and Monaghan typologies (Figure 11). In comparison to TP, catchment average 

TN export coefficients estimated using Srinivasan and Monaghan were more consistent. The 

larger differences for TP might be due to differences in typology definition (i.e., factors and 

categories) and/or more variability in the methods used to derive the export coefficients for 

each Type.  
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The TP export coefficients for Srinivasan and Monaghan typologies were predominantly 

derived using the OVERSEER model. OVERSEER does not account for a significant portion 

of the total phosphorus export associated with infrequent, but large-scale, erosion events 

(Parfitt et al. 2007, 2013; Gray et al. 2016). Underestimation of TP associated with large-scale 

erosion events is likely to be contribute to the uncertainty of all TP export coefficients that are 

derived from OVERSEER. Evidence for this was provided by our study’s large proportion 

(~30% of sites) with negative attenuation coefficients. This indicates that export coefficients 

for at least some Types in both typologies are underestimating the true diffuse source TP loss 

rates. 

The empirical TP yield and concentration models had poor performance (Figure 30, Figure 

34) compared to the performance of the same Types of TN models. For example, the empirical 

TP yield model that used only land use/cover categories as predictors explained very little of 

the between-site variability in TP yields (adjusted R2 value of 4%). Our conclusion is that the 

typologies used to derive the empirical yield and concentration models, as well as the 

OVERSEER modelling used to generate the TP export coefficients associated with the 

Srinivasan and Monaghan typologies, are lacking important explanatory variables. The 

missing variables may be associated with natural processes that determine P concentrations. 

Generally, there are three important natural processes that influence P concentrations: 

geogenic supply, mobilisation and transport, and microbially mediated reduction-oxidation 

(redox) which influences mobility, and speciation of N and P (Boomer and Bedford 2008; 

Maynard et al. 2011; Parsons et al. 2017). Porder and Ramachandran (2013) found a 30-fold 

difference in median P concentration among rock types, ranging from 120 ppm (several 

ultramafic rocks) to >3,000 ppm (several alkali basalts). Mage and Porder (2013) showed that 

parent material explained the most variation in P availability in soils (56% of variation 

explained) and topographic position (ridges, slopes or valleys) explained an additional (10-

15% of variation). Many of these rock types are found in NZ and there can be significant 

variation in these types even within large catchments.  

We conclude from our findings, and the above literature, that catchment modelling that does 

not account for the natural processes that influence P loss, and in particular parent material 

(rock type and topographic position), are going to poorly represent P loads and concentrations 

in downstream aquatic environments. We propose that a way forward may be to derive 

national scale maps that account for some of the natural processes that govern TP generation, 

transport and attenuation and to investigate their incorporation into typologies used for 

catchment water quality modelling. An interesting outcome of the empirical TP modelling is 

the apparent limited influence of land use on observed instream TP. This has consequences 

for the way that decision makers need to define policies and actions to reduce catchment TP 

yields. For example, these results may suggest that it is difficult currently to justify limits for 

resource use based on P loss and that it would be better to focus on targeted mitigations such 

as reducing erosion and better management of critical-source areas (McDowell and 

Srinivasan 2009). We recommend that further research on quantifying catchment TP losses 

and loads is needed.  

6.7 Catchment water quality models and simulations are uncertain 

The uncertainties associated with water quality models, and their use to make simulations of 

the impact of land management actions on water quality, cannot be reduced appreciably in 

the short to medium term. However, catchment water quality models will generally need to be 

used to inform decision makers about appropriate responses to water quality issues including 

actions such as limiting resource use, requiring mitigations and land use changes. This report 
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shows that these decisions will ultimately need to be made in the face of considerable 

uncertainty.  

To some extent the large uncertainties associated with estimates of absolute loads or 

concentrations are less important than the relative difference between two simulations (e.g., 

between a baseline and a mitigation scenario). In other words, users of model outputs are 

likely to be more interested in the predicted relative change in load or concentrations between 

scenarios than the absolute values of the predictions. This is advantageous because there is 

likely some commonality in the sources of uncertainty between scenarios (e.g., because some 

uncertainty is due to within-Type variability of land or management characteristics that are 

used in the estimation of loss rates) and this means that the uncertainty in the relative change 

will be less than the absolute values. However, methods for understanding and quantifying 

the uncertainty of these relative differences for both our empirically based approach and for 

process-based catchment models have not been developed. Defining and quantifying 

uncertainties in relative differences between scenarios presents a considerable technical 

challenge that needs further research. 

 



 

 Page 90 of 106 

Acknowledgements 

We thank Amy Whitehead (NIWA) for assembly of water quality and flow data from regional 

councils and the National River Quality Monitoring Network.  



 

 Page 91 of 106 

References 

Bloomer D, O’Brien G, Posthuma L (2020) Modelled Loss of Nutrients From Vegetable 
Growing Scenarios In Horowhenua. Page Bloomer Associates, New Zealand. 

Boomer KMB, Bedford BL (2008) ‘Groundwater-induced redox-gradients control soil 
properties and phosphorus availability across four headwater wetlands, New York, 
USA’ Biogeochemistry 90, 259–274. 

Breiman L (2001) ‘Random Forests’ Machine Learning 45, 5–32. 

Bright J, Ford S, Irving C (2018) Water Allocation Economics Analysis: Land/Water Use 
Modelling. Aqualinc client report C17020/1. Aqualinc Research Limited, Christchurch, 
New Zealand. 

Cade BS, Noon BR (2003) ‘A gentle introduction to quantile regression for ecologists’ 
Frontiers in Ecology and the Environment 1, 412–420. 

Cohn TA (2005a) ‘Estimating contaminant loads in rivers: An application of adjusted 
maximum likelihood to type 1 censored data’ Water Resources Research 41,. 
Available at http://onlinelibrary.wiley.com/doi/10.1029/2004WR003833/full [Verified 
21 January 2016] 

Cohn TA (2005b) ‘Estimating contaminant loads in rivers: An application of adjusted 
maximum likelihood to type 1 censored data’ Water Resources Research 41,. 

Cohn TA, Caulder DL, Gilroy EJ, Zynjuk LD, Summers RM (1992) ‘The validity of a simple 
statistical model for estimating fluvial constituent loads: An empirical study involving 
nutrient loads entering Chesapeake Bay’ Water Resources Research 28, 2353–
2363. 

Cohn TA, Delong LL, Gilroy EJ, Hirsch RM, Wells DK (1989) ‘Estimating constituent loads’ 
Water resources research 25, 937–942. 

Cox T, Kerr T, Snelder T, Fraser C (2022) Manawatū-Whanganui Region Catchment 
Nutrient Models: Model Updates. Supporting Regional Land and Water Management. 
LWP Client Report 2022–02. LWP Ltd, Christchurch, New Zealand. 

Cutler DR, Edwards JTC, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ (2007) 
‘Random forests for classification in ecology’ Ecology 88, 2783–2792. 

Davis M (2014) ‘Nitrogen leaching losses from forests in New Zealand’ New Zealand Journal 
of Forestry Science 44, 1–14. 

Drewry JJ (2018) Nitrogen and phosphorus loss values for selected land uses. Landcare 
Research Contract Report LC3367. Landcare Research, New Zealand. 

Duan N (1983) ‘Smearing estimate: a nonparametric retransformation method’ Journal of the 
American Statistical Association 78, 605–610. 

Efron B (1981) ‘Nonparametric estimates of standard error: The jackknife, the bootstrap and 
other methods.’ Biometrika 68, 589–599. 



 

 Page 92 of 106 

Elliott AH, Alexander RB, Schwarz GE, Shankar U, Sukias JPS, McBride GB (2005) 
‘Estimation of nutrient sources and transport for New Zealand using the hybrid 
mechanistic-statistical model SPARROW’ Journal of Hydrology (New Zealand) 44, 1. 

Elliott AH, Semadeni-Davies AF, Shankar U, Zeldis JR, Wheeler DM, Plew DR, Rys GJ, 
Harris SR (2016) ‘A national-scale GIS-based system for modelling impacts of land 
use on water quality’ Environmental Modelling & Software 86, 131–144. 

Etheridge Z, Fietje L, Metherell A, Lilburne L, Mojsilovich O, Robson M, Steel K, Hanson M 
(2018) ‘Collaborative expert judgement analysis of uncertainty associated with 
catchment-scale nitrogen load modelling with OVERSEER®’ Farm Environmental 
Planning–Science, Policy and Practice 14. 

Fraser CE, Snelder T (2019) Test of methods for calculating contaminant loads in the 
Manawatū-Whanganui region: Supplementary report. 2019–08. LWP Ltd, 
Christchurch. 

Gray CW, Wheeler DM, McDowell R, Watkins NL (2016) ‘Overseer and phosphorus: 
Strengths and weaknesses’ Integrated nutrient and water management for 
sustainable farming Fert Lime Res Ctr, Massey Univ, Palmerston North, New 
Zealand 1–32. 

Hirsch RM, Archfield SA, De Cicco LA (2015) ‘A bootstrap method for estimating uncertainty 
of water quality trends’ Environmental Modelling & Software 73, 148–166. 
doi:10.1016/j.envsoft.2015.07.017 

Hirsch RM, De Cicco LA (2015) User guide to Exploration and Graphics for RivEr Trends 
(EGRET) and dataRetrieval: R packages for hydrologic data. US Geological Survey, 

Hirsch RM, Moyer DL, Archfield SA (2010) ‘Weighted regressions on time, discharge, and 
season (WRTDS), with an application to Chesapeake Bay river inputs 1’ JAWRA 
Journal of the American Water Resources Association 46, 857–880. 

Hughes AO, Quinn JM (2019) ‘The effect of forestry management activities on stream water 
quality within a headwater plantation Pinus radiata forest’ Forest Ecology and 
Management 439, 41–54. 

Johnes PJ (2007) ‘Uncertainties in annual riverine phosphorus load estimation: impact of 
load estimation methodology, sampling frequency, baseflow index and catchment 
population density’ Journal of Hydrology 332, 241–258. 

Mage SM, Porder S (2013) ‘Parent material and topography determine soil phosphorus 
status in the Luquillo Mountains of Puerto Rico’ Ecosystems 16, 284–294. 

Mason CH, Perreault Jr WD (1991) ‘Collinearity, power, and interpretation of multiple 
regression analysis’ Journal of marketing research 28, 268–280. 

Maynard JJ, O’Geen AT, Dahlgren RA (2011) ‘Sulfide induced mobilization of wetland 
phosphorus depends strongly on redox and iron geochemistry’ Soil Science Society 
of America Journal 75, 1986–1999. 

McBride GB (2005) ‘Using Statistical Methods for Water Quality Management: Issues, 
Problems and Solutions (Vol. 19).’ (John Wiley & Sons) 



 

 Page 93 of 106 

McDowell RW, Monaghan RM, Smith C, Manderson A, Basher L, Burger DF, Laurenson S, 
Pletnyakov P, Spiekermann R, Depree C (2021) ‘Quantifying contaminant losses to 
water from pastoral land uses in New Zealand III. What could be achieved by 2035?’ 
New Zealand Journal of Agricultural Research 64, 390–410. 

McDowell RW, Srinivasan MS (2009) ‘Identifying critical source areas for water quality: 2. 
Validating the approach for phosphorus and sediment losses in grazed headwater 
catchments’ Journal of Hydrology 379, 68–80. 

McMahon G, Gregonis SM, Waltman SW, Omernik JM, Thorson TD, Freeouf JA, Rorick AH, 
E. KJ (2001) ‘Developing a spatial framework of common ecological regions for the 
conterminous United States’ Environmental Management 28, 293–316. 

Monaghan R, Manderson A, Basher L, Smith C, Burger D, Meenken E, McDowell R (2021) 
‘Quantifying contaminant losses to water from pastoral landuses in New Zealand I. 
Development of a spatial framework for assessing losses at a farm scale’ New 
Zealand Journal of Agricultural Research 64, 344–364. 

Moores J, Easton S, Gadd J, Sands M (2017) Te Awarua-o-Porirua Collaborative Modelling 
Project. Customisation of urban contaminant load model and estimation of 
contaminant loads from sources excluded from the core models. NIWA Client Report 
No. 2017050AK. NIWA and Jacobs for Greater Wellington Regional Council, 
Auckland. 

Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) ‘Model 
evaluation guidelines for systematic quantification of accuracy in watershed 
simulations’ Transactions of the ASABE 50, 885–900. 

Moriasi DN, Gitau MW, Pai N, Daggupati P (2015) ‘Hydrologic and water quality models: 
Performance measures and evaluation criteria’ Transactions of the ASABE 58, 
1763–1785. 

Nash JE, Sutcliffe JV (1970) ‘River flow forecasting through conceptual models part I—A 
discussion of principles’ Journal of hydrology 10, 282–290. 

Neter J, Kutner MH, Nachtsheim CJ, Wasserman W (2004) ‘Applied linear statistical 
models.’ (McGraw-Hill: Chicago, IL) 

Newsome PFJ, Wilde RH, Willoughby EJ (2008) land resource information system spatial 
data layers. Data Dictionary. Landcare Research New Zealand Ltd, Palmerston 
North. Available at https://lris.scinfo.org.nz/document/9162-lris-data-dictionary-v3/ 
[Verified 22 March 2022] 

Parfitt R, Dymond J, Ausseil A, Clothier B, Deurer M, Gillingham A, Gray R, Houlbrooke D, 
Mackay A, McDowell R (2007) Best practice phosphorus losses from agricultural 
land. Landcare Research Client report LC0708/012. Landcare Research, Palmerston 
North, NZ. 

Parfitt RL, Frelat M, Dymond JR, Clark M, Roygard J (2013) ‘Sources of phosphorus in two 
subcatchments of the Manawatu River, and discussion of mitigation measures to 
reduce the phosphorus load’ New Zealand journal of agricultural research 56, 187–
202. 



 

 Page 94 of 106 

Parsons CT, Rezanezhad F, O’Connell DW, Van Cappellen P (2017) ‘Sediment phosphorus 
speciation and mobility under dynamic redox conditions’ Biogeosciences 14, 3585–
3602. 

Piñeiro G, Perelman S, Guerschman J, Paruelo J (2008) ‘How to evaluate models: Observed 
vs. predicted or predicted vs. observed?’ Ecological Modelling 216, 316–322. 

Porder S, Ramachandran S (2013) ‘The phosphorus concentration of common rocks—a 
potential driver of ecosystem P status’ Plant and soil 367, 41–55. 

Preston SD, Bierman VJ, Silliman SE (1989) ‘An evaluation of methods for the estimation of 
tributary mass loads’ Water Resources Research 25, 1379–1389. 

Quilbé R, Rousseau AN, Duchemin M, Poulin A, Gangbazo G, Villeneuve J-P (2006) 
‘Selecting a calculation method to estimate sediment and nutrient loads in streams: 
application to the Beaurivage River (Québec, Canada)’ Journal of Hydrology 326, 
295–310. 

R Core Team (2023) ‘R: A language and environment for statistical computing.’ Available at 
https://www.R-project.org/. 

Roygard JKF, McArthur KJ, Clark ME (2012) ‘Diffuse contributions dominate over point 
sources of soluble nutrients in two sub-catchments of the Manawatu River, New 
Zealand’ New Zealand Journal of Marine and Freshwater Research 46, 219–241. 

Semadeni-Davies A, Jones-Todd C, Srinivasan MS, Muirhead R, Elliott A, Shankar U, 
Tanner C (2020) ‘CLUES model calibration and its implications for estimating 
contaminant attenuation’ Agricultural Water Management 228, 105853. 

Semadeni-Davies AF, Jones-Todd CM, Srinivasan MS, Muirhead RW, Elliott AH, Shankar U, 
Tanner CC (2021) ‘CLUES model calibration: residual analysis to investigate 
potential sources of model error’ New Zealand Journal of Agricultural Research 64, 
320–343. 

Sharpley AN, McDowell RW, Kleinman PJ (2001) ‘Phosphorus loss from land to water: 
integrating agricultural and environmental management’ Plant and soil 237, 287–307. 

Shepherd M, Wheeler D, Selbie D, Buckthought L, Freeman M (2013) ‘Overseer®: 
Accuracy, precision, error and uncertainty’ Currie, LD, and Christensen, CL, Accurate 
and efficient use of nutrients on farms, Massey University, Palmerston North 1–8. 

Snelder TH, Biggs BJF (2002) ‘Multi-scale river environment classification for water 
resources management’ Journal of the American Water Resources Association 38, 
1225–1240. 

Snelder TH, McDowell RW, Fraser CE (2017) ‘Estimation of catchment nutrient loads in New 
Zealand using monthly water quality monitoring data’ JAWRA Journal of the 
American Water Resources Association 53, 158–178. 

Snelder TH, Whitehead AL, Fraser C, Larned ST, Schallenberg M (2020) ‘Nitrogen loads to 
New Zealand aquatic receiving environments: comparison with regulatory criteria’ 
New Zealand Journal of Marine and Freshwater Research 54, 527–550. 



 

 Page 95 of 106 

Srinivasan MS, Muirhead RW, Singh SK, Monaghan RM, Stenger R, Close ME, Manderson 
A, Drewry JJ, Smith LC, Selbie D (2021) ‘Development of a national-scale framework 
to characterise transfers of N, P and Escherichia coli from land to water’ New 
Zealand Journal of Agricultural Research 64, 286–313. 

Udo de Haes HA, Klijn F (1994) Environmental policy and ecosystem classification. In 
‘Ecosyst. Classif. Environ. Manag.’ (Ed F Klijn) pp. 1–21. (Kluwer Academic 
Publishers.: Dordrecht, Netherlands) 

Whitehead A, Fraser CE, Snelder TH (2021) Spatial modelling of river water-quality state. 
Incorporating monitoring data from 2016 to 2020. 2021303CH. NIWA, Christchurch. 

Whitehead A, Fraser CE, Snelder TH, Walter K, Woodward S, Zammit C (2021) Water 
quality state and trends in New Zealand Rivers. Analyses of national data ending in 
2020. 2021296CH. NIWA, Christchurch. 

Woods RA, Hendrikx J, Henderson R, Tait A (2006) ‘Estimating mean flow of New Zealand 
rivers’ Journal of Hydrology (New Zealand) 45, 95–110. 

 

  



 

 Page 96 of 106 

Appendix A Water quality site load calculations 

A1 General approach 

Mean annual TN and TP loads at all water quality sites were derived from monthly TN and TP 

concentrations and observed daily flows. Load calculation methods generally comprise two 

steps: (1) the generation of a series of flow and concentration pairs representing ‘unit loads’ 

and (2) the summation of the unit loads over time to obtain the total load. In practice step 1 

precedes step 2 but in the explanation that follows, we describe step 2 first.  

If flow and concentration observations were available for each day, the instream yield, (the 

mean annual load, standardised by the upstream catchment area) would be the summation of 

the daily flows multiplied by their corresponding concentrations: 

𝐿 =
𝐾

𝐴𝑐𝑁
 ∑ 𝐶𝑗𝑄𝑗

𝑁
𝑗=1          (Equation A11) 

where L: mean annual instream yield (kg yr-1 ha-1), Ac: catchment area, ha, K: units conversion 

factor (31.6 kg s mg-1 yr-1), 𝐶𝑗: contaminant concentration for each day in period of record (mg 

m-3), 𝑄𝑗: daily mean flow for each day in period of record (m3 s-1), and N: number of days in 

period of record.  

In this summation, the individual products represent unit loads. Because concentration data 

are generally only available for infrequent days (i.e., generally in this study, monthly 

observations), unit loads can only be calculated directly from measurements for these days. 

However, flow is generally observed continuously and there are often relationships between 

concentration and flow, time and/or season. Rating curves exploit these relationships by 

deriving a relationship between the sampled nutrient concentrations (ci) and simultaneous 

observations of flow (qi). Depending on the approach, relationships between concentration 

and time and season may be included in the rating curve. This rating curve is then used to 

generate a series of flow and concentration pairs (i.e., to represent Qj and Cj in equation A1) 

for each day of the entire sampling period (Cohn et al. 1989). The estimated flow and 

concentration pairs are then multiplied to estimate unit loads, and these are then summed and 

transformed by K, N and Ac to estimate mean annual instream yield (i.e., step 2 of the 

calculation method; Equation A1).   

There are a variety of approaches to defining rating curves. Identifying the most appropriate 

approach to defining the rating curve requires careful inspection of the available data for each 

site and contaminant. The details of the approaches and the examination of the data are 

summarised below. Further details are provided by Fraser and Snelder (2019). 

A2 Load calculation methods 

A2.1 L7 model 

Two regression model approaches to defining rating curves of (Cohn et al. 1989, 1992) and 

(Cohn 2005a) are commonly used to calculate loads. The regression models relate the natural 

log of concentration to the sum of three explanatory variables: discharge, time, and season. 

The L7 model is based on seven fitted parameters given by: 

𝑙𝑛(𝐶𝑖̂) =  𝛽1 +  𝛽2 [𝑙𝑛(𝑞𝑖) − (𝑙𝑛(𝑞))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] + 𝛽3 [𝑙𝑛(𝑞𝑖) − (𝑙𝑛(𝑞))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]
2

+ 𝛽4(𝑡𝑖 − 𝑇̅)

+ 𝛽5(𝑡𝑖 − 𝑇̅)2 + 𝛽6𝑠𝑖𝑛(2𝜋𝑡𝑖) + 𝛽7𝑐𝑜𝑠(2𝜋𝑡𝑖) 

(Equation A2) 



 

 Page 97 of 106 

where, 𝑖 is the index for the concentration observations,  𝛽1,2,..7: regression coefficients, 𝑡𝑖: time 

in decimal years, 𝑇̅: mean value of time in decimal years, (𝑙𝑛(𝑞))̅̅ ̅̅ ̅̅ ̅̅ ̅̅  mean of the natural log of 

discharge on the sampled days, and 𝐶𝑖̂: is the estimated ith concentration. 

The coefficients are estimated from the sample data by linear regression, and when the 

resulting fitted model is significant (p < 0.05), it is then used to estimate the concentration on 

each day in the sample period, 𝑙𝑛(𝐶𝑗̂). The resulting estimates of 𝑙𝑛(𝐶𝑗̂) are back-transformed 

(by exponentiation) to concentration units. Because the models are fitted to the log 

transformed concentrations the back-transformed predictions are corrected for 

retransformation bias. We used the smearing estimate (Duan 1983) as a correction factor (S):  

𝑆 =  
1

𝑛
∑ 𝑒𝜀𝑖̂𝑛

𝑖=1         (Equation A3)  

where, 𝜀̂ are the residuals of the regression models, and n is the number of flow-concentration 

observations. The smearing estimate assumes that the residuals are homoscedastic and 

therefore the correction factor is applicable over the full range of the predictions. 

The average annual load is then calculated by combining the flow and estimated concentration 

time series:  

𝐿 =
𝐾𝑆

𝑁
 ∑ 𝐶̂𝑗𝑄𝑗

𝑁
𝑗=1         (Equation A4) 

If the fitted model is not significant, 𝐶𝑗̂  is replaced by the mean concentration and S is one.   

To provide an estimate of the load at a specific date, (i.e. test = 1/3/2004) a transformation is 

performed so that the year components of all dates (tj) are shifted such that all transformed 

dates lie within a one-year period centred on the proposed observation date (i.e. Y=1/9/2003 

to 31/8/2004).  For example, flow at time t=13/6/2007 would have a new date of Y =13/6/2004, 

and a flow at time t=12/11/1998 would have a new date of Y=12/11/2003.  

𝑙𝑛 (𝐶𝑗
𝑌̂) =  𝛽1 +  𝛽2 [𝑙𝑛(𝑞𝑗) − (𝑙𝑛(𝑞))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] + 𝛽3 [𝑙𝑛(𝑞𝑗) − (𝑙𝑛(𝑞))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]

2
+ 𝛽4(𝑌𝑗 − 𝑇̅)

+ 𝛽5(𝑌𝑗 − 𝑇̅)
2

+ 𝛽6𝑠𝑖𝑛(2𝜋𝑌𝑗) + 𝛽7𝑐𝑜𝑠(2𝜋𝑌𝑗) 

(Equation A5) 

where 𝐶𝑗
𝑌̂ is the estimated jth concentration for the estimation year, and Yj is the transformed 

date of the ith observation, and all other variables are as per equation A2. We use this approach 

to estimate loads for the analysis that are representative of the middle of the state time period 

(i.e. the full calendar year of 2015).  The regression coefficients (𝛽1,2,..7) are those derived from 

fitting Equation A5 to the observation dataset.  It follows that the estimated load for the year 

of interest can be calculated by:   

𝐿𝑌 =
𝐾𝑆

𝑁
 ∑ 𝐶̂𝑗

𝑌𝑄𝑗
𝑁
𝑗=1        (Equation A6) 

A2.2 L5 model 

The L5 model is the same as L7 model except that two quadratic terms are eliminated:  

𝑙𝑛(𝐶𝑖̂) =  𝛽1 +  𝛽2(𝑙𝑛(𝑞𝑖)) + 𝛽3(𝑡𝑖) + 𝛽4𝑠𝑖𝑛(2𝜋𝑡𝑖) + 𝛽5𝑐𝑜𝑠(2𝜋𝑡𝑖) (Equation A7) 

The five parameters are estimated, and loads are calculated in the same manner as the L7 

model.  Following the approach outlined for the L7 model, the L5 model can be adjusted when 

used for prediction to provide estimates for a selected load estimation date: 
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𝑙𝑛 (𝐶𝑗
𝑌̂) =  𝛽1 +  𝛽2[𝑙𝑛(𝑞𝑗)] + +𝛽4(𝑌𝑗 − 𝑇̅) + 𝛽6𝑠𝑖𝑛(2𝜋𝑌𝑗) + 𝛽7𝑐𝑜𝑠(2𝜋𝑌𝑗) (Equation A8) 

A2.3 Flow stratification 

Roygard et al. (2012) employed a flow stratification approach to defining rating curves. This 

approach is based on a non-parametric rating curve, which is defined by evaluating the mean 

concentration within equal increments of the flow probability distribution (flow ‘bins’).  In their 

application, Roygard et al. (2012) employed ten equal quantile-based categories (flow decile 

bins)and then calculated mean concentrations within each bin. This non-parametric rating 

curve can then be used to estimate nutrient concentrations, 𝐶̂, for all days with flow 

observations. At step 2, the load is calculated following Equation A9, providing an estimate of 

average annual load over the observation time period. 

𝐿 =
𝐾

𝑁
 ∑ 𝐶̂𝑗𝑄𝑗

𝑁

𝑗=1

 
(Equation A9) 

where 𝐶𝑗̂ is calculated mean concentration associated with the flow quantile bin of the flow Qj., 

and all other variables are as per equation A5. 

A2.4 Flow stratification with trend 

We included a modified version of the flow stratification method to account for trends in water 

quality. This is useful when loads are required to be estimated for a particular point in time, 

rather than as an average over the complete observation period, particularly when there is a 

strong trend evident. We detrended the observation data by fitting Equation A10 to the 

concentration time series. 

𝑙𝑛(𝐶𝑖̂) =  𝛽1 + 𝛽2(𝑡𝑖) 
(Equation A10) 

We then used the concentration residuals to develop a non-parametric rating curve.  𝐶𝑗̂ is 

calculated as the mean residual concentration associated with the flow quantile bin of the flow 

Qj., plus the predicted value of concentration at time Tj, which is multiplied by the smearing 

coefficient to account for the log transformation of Equation A10). 

A3 Precision of load estimates 

The statistical precision of a sample statistic, in this study the mean annual load, is the amount 

by which it can be expected to fluctuate from the population parameter it is estimating due to 

sample error. In this study, the precision represents the repeatability of the estimated load if it 

was re-estimated using the same method under the same conditions. Precision is 

characterised by the standard deviation of the sample statistic, commonly referred to as the 

standard error. We evaluated the standard error of each load estimate by bootstrap resampling 

(Efron 1981). For each load estimate we constructed 100 resamples of the concentration data 

(of equal size to the observed dataset), each of which was obtained by random sampling with 

replacement from the original dataset. Using each of these datasets, we recalculated the site 

load and estimated the 95% confidence intervals, using the boot R package.   
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A4 Selection of best load estimation methodology 

TN and TP loads were calculated for all sites using each of the four load estimation methods. 

We evaluated the performance of each rating curve method for predicting observed 

concentrations, using a range of model performance measures (see Fraser and Snelder 

(2019) for details). We identified site loads and method combinations that had any of: 

1. unrealistically large instream yield values (i.e., site load divided by catchment area); 

2. large differences in the loads calculated using different methods. 

For these site and method combinations (approximately 10-20% of sites for each nutrient 

variable), we manually inspected diagnostic plots (e.g., C-Q plots, C-T plots, comparisons of 

sampled flow distributions relative to observed flow distributions). We used expert judgement 

to select the most appropriate load estimation method for each site that were outside of the 

two criteria outlined above. As well as selecting from one of the four rating curve methods 

described above, we also allowed sites to be discarded at this stage if no method appeared 

to satisfactorily describe the observed behaviour. This process also suggested that, for the 

manually inspected sites, the selection of the model with the lowest RMSD (in terms of 

performance in predicting observed concentrations) was the criteria most consistent with the 

outcomes of the expert judgement. For the remainder of the site and nutrient variable 

combinations that were not flagged by the above criteria (and for which the diagnostic plots 

were not inspected), the most appropriate load estimation method was selected aas the rating 

curve method that yielded the lowest RMSD. 

A5 Verification of loads 

Load estimation involves subjective decisions, such as the choice of method. We sought to 

verify our load estimates (i.e., demonstrate they were reasonable) by calculating them using 

an alternative method. We undertook the validation of our N and P load estimates by applying 

a new sophisticated load estimation method called Weighted Regressions on Time, 

Discharge, and Season (WRTDS; Hirsch et al., 2015, 2010).  

The WRTDS method provides for considerable flexibility in representing the long-term trend, 

seasonal components, and discharge-related components of the behaviour of the water-

quality variable of interest. However, this flexibility comes at the expense of requiring more 

data. Fitting a WRTDS model requires that the number of samples collected at the sampling 

site is more than 100 and the period of sample collection is at least 10 years. In addition, 

model fitting requires a complete record of daily flow values for the site over the entire period 

being modelled.  

The WRTDS method expresses concentration as a function of time, discharge, and season 

with the following form: 

𝑙𝑛(𝐶̂) =  𝛽0 + 𝛽1𝑙𝑛(𝑄) + 𝛽2(𝑡𝑖) + 𝛽3𝑠𝑖𝑛(2𝜋𝑡) + 𝛽4𝑐𝑜𝑠(2𝜋𝑡) + 𝜀 (Equation A11) 

where, 𝐶̂ is the predicted concentration of the water quality variable, 𝑄 is the flow rate, the 𝛽 

values are fitted parameters, 𝑡 is the time in years and 𝜀 is the unexplained variation. The 

functional form is linear in t, linear in ln(Q), and sinusoidal on an annual period (i.e., season). 

However, the method of fitting the model means that the parameter values are not constant 

throughout the entire domain of the data but vary over the explanatory variable space defined 

by 𝑄 and 𝑡. This is achieved by weighting the observations based on their relevance to the 

point in the explanatory variable space being considered (referred to by Hirsch et al. 2010 as 
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an estimation point 𝑄0, 𝑇0). Thus, observations that are close to 𝑄0, 𝑇0 (in any of flow, year, or 

season) have a strong influence on the parameter values at that point in the explanatory 

variable space and the influence decreases the further the observation is from the estimation 

point. This approach has the following advantages over the methods described above: 

1. The concentration – flow relationship is allowed to change smoothly over time.   

2. The trend component is not constrained to be any particular functional form and is 

allowed to change smoothly over time.  

3. There is no assumption that the seasonal pattern repeats but rather the shape of the 

seasonal pattern is allowed to change smoothly over time.  

These advantages mean that a WRTDS model can detect and fit both long term (persistent) 

trend, short term fluctuations, as well as cyclic seasonal variability that evolves over time. 

Collectively this allows for more realistic representation of how water quality changes and 

increases the potential to understand the drivers of change.  

A WRTDS model includes a ‘‘flow-normalisation’’ procedure that controls for the association 

between concentration and flow regime variation that happen to have occurred during the 

monitoring period and thereby describe the concentrations that would have occurred under 

“average” flow regime. The weighted regression approach to fitting a WRTDS model means 

“flow-normalised” predictions are not simply adjustments for instantaneous flows but account 

for flow regime variability at longer timescales.  

The performance of a fitted WRTDS model is assessed using “leave-one-out cross validation” 

(Hirsch and De Cicco 2015). This procedure leaves one observation out of the fitting dataset, 

fits a model to the remaining observations and uses that model to estimate the concentration 

for the left-out observation. This step is repeated for all observations in the dataset producing 

a set of independent predictions for each observation. These independent predictions can be 

used to quantify various measures of model performance (Hirsch and De Cicco 2015). In this 

study, we fitted a linear regression of the observations against the predictions and used the 

R2 value of this regression to describe the performance of the model. We note that WRTDS 

can also be used to assess trends by assessing the magnitude and significance of differences 

in predicted concentrations between dates of interest (Hirsch et al. 2015). However, we did 

not make use of this capability of WRTDS in this study. 

We calculated TN and TP loads at each site using WRTDS with the same input data described 

above. Calculations were performed with the Exploration and Graphics for RivEr Trends 

(EGRET) and data Retrieval R package (Hirsch et al. 2015). The outputs of the EGRET 

package are numerous and complicated. We obtained from the output the flow normalised 

flux (TN and TP kg day-1) for 2020. Flow normalised flux is a representation of flux that 

integrates over the probability distribution of discharge in order to remove the effect of year-

to-year variation in discharge. It is therefore consistent with the approach we used to calculate 

loads which integrated unit loads over the entire flow time series. Using the flux estimate for 

2020 was consistent with our load estimates which pertain to 2020. We converted the flux to 

the units of TN and TP yields used by this study (kg ha-1 yr-1) by dividing by catchment area of 

the water quality stations and multiplying by the appropriate unit conversion factor.  

It should be noted that there are many methods of load calculation that differ in how the 

underlying relationships are represented in subtle ways. Many studies have documented 

differences in loads calculated from the same data but using different methods and it is often 

shown these differences can be large (e.g., Cohn, 2005; Johnes, 2007; Preston et al., 1989; 
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Quilbé et al., 2006; Snelder et al., 2017). Therefore, differences between our loads and those 

estimated by WRTDS are expected. Notwithstanding this, the plot shown in Figure 43 and 

Figure 44 indicates strong correspondence between the two sets of loads. The majority of the 

95% confidence intervals estimated by this study intersect the one-to-one line indicating that 

the two sets of estimates are consistent. Our conclusion is that the loads calculated and used 

in this study are reasonable and are the best estimates that we could produce, given the data.  

 

Figure 43. Comparison of TN loads (expressed as yields) calculated by this study (x-axis) with 

loads calculated using WRTDS. The error bars show the 95% confidence intervals for both 

sets of estimates. The red line indicates perfect correspondence (one-to-one).  
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Figure 44. Comparison of TP loads (expressed as yields) calculated by this study (x-axis) with 

loads calculated using WRTDS. The error bars show the 95% confidence intervals for both 

sets of estimates. The red line indicates perfect correspondence (one-to-one).  
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Appendix B Definition of Types for the empirical water quality models  

Table 15. Sets of potential Types for the TN concentration and yield models and the TP concentration model. Category names that have a subscript ‘S’ 

(e.g., SteepS) indicate a category defined as per Srinivasan et al. (2021). Category names linked by a plus sign (e.g. EasyHillS + SteepS) indicate the 

aggregation of categories defined by Srinivasan et al. (2021). Land use definitions are defined in Table 1. Note that Bare and Water were excluded for 

the TN concentration and yield models and therefore the number of Types represented in the models was decreased by two.  

Set 
(no. types) 

Types used by this study Details of how the Types are defined 

1 (9) Bare, Cropland, Dairy, Forestry, Natural, OrchardVineyard, SheepBeef, Urban, 
Water 

Land use/cover categories only. The categories Water, Bare were removed for the TN models 

2 (13) Bare, Cropland, Dairy_Dry, Dairy_Irrigated, Dairy_Moist, Dairy_Wet, Forestry, 
Natural, OrchardVineyard, SheepBeef_Flat, SheepBeef_Hill, Urban, Water 

Dairy subdivided into Moisture categories defined by DryS, MoistS, WetS and IrrigatedS. Sheep & Beef 
subdivided into Hill and Flat defined as EasyHillS + RollingS + SteepS and FlatS, respectively.  

3 (14) Bare, Cropland, Dairy_Dry, Dairy_Wet, Forestry, Natural_Dry, Natural_Wet, 
OrchardVineyard, SheepBeef_Dry_Flat, SheepBeef_Dry_Hill, 
SheepBeef_Wet_Flat, SheepBeef_Wet_Hill, Urban, Water 

Dairy and Natural subdivided into Dry and Wet defined as DryS and MoistS + WetS. Sheep & Beef 
subdivided into Dry_Hill, Dry_Flat, Wet_Hill and Wet_Flat where Hill and Flat are EasyHillS + SteepS and 
FlatS + RollingS, respectively, and where Dry and Wet are DryS and MoistS + WetS respectively.  

4 (15) Bare, Cropland, Dairy_Dry, Dairy_Irrigated, Dairy_Moist, Dairy_Wet, Forestry, 
Natural, OrchardVineyard, SheepBeef_Dry_Flat, SheepBeef_Dry_Hill, 
SheepBeef_Wet_Flat, SheepBeef_Wet_Hill, Urban, Water 

Dairy subdivided into Dry, Wet and Irrigated defined as DryS, MoistS + WetS and IrrigatedS. Sheep & Beef 
subdivided into Dry_Hill, Dry_Flat, Wet_Hill and Wet_Flat where Hill and Flat are EasyHillS + SteepS and 
FlatS + RollingS, respectively, and where Dry and Wet are DryS and MoistS + WetS respectively. 

5 (16) Bare, Cropland, Dairy_Dry, Dairy_Irrigated, Dairy_Moist, Dairy_Wet, Forestry, 
Natural_Dry, Natural_Wet, OrchardVineyard, SheepBeef_Dry_Flat, 
SheepBeef_Dry_Hill, SheepBeef_Wet_Flat, SheepBeef_Wet_Hill, Urban, Water 

As for Set 4 with Natural subdivided into Wet and Dry defined as DryS and MoistS + WetS. 

6 (17) Bare, Cropland, Dairy_Dry, Dairy_Irrigated, Dairy_Moist, Dairy_Wet, Forestry_Dry, 
Forestry_Wet, Natural_Dry, Natural_Wet, OrchardVineyard, SheepBeef_Dry_Flat, 
SheepBeef_Dry_Hill, SheepBeef_Wet_Flat, SheepBeef_Wet_Hill, Urban, Water 

As for Set 5 with Forestry subdivided into Wet and Dry defined as Srinivasan Dry and Moist + Wet. 

7 (21) Bare, Cropland, Dairy_Dry, Dairy_Irrigated, Dairy_Moist, Dairy_Wet, Forestry_Dry, 
Forestry_Wet, Natural_Dry, Natural_Wet, OrchardVineyard, 
SheepBeef_Dry_EasyHill, SheepBeef_Dry_Flat, SheepBeef_Dry_Rolling, 
SheepBeef_Dry_Steep, SheepBeef_Wet_EasyHill, SheepBeef_Wet_Flat, 
SheepBeef_Wet_Rolling, SheepBeef_Wet_Steep, Urban, Water 

As for Set 6 with Sheep & Beef subdivided into Dry and Wet defined as DryS, MoistS + WetS and FlatS, 
RollingS, EasyHillS and SteepS. 

8 (23) Bare, Cropland, Dairy_Dry, Dairy_Irrigated, Dairy_Moist, Dairy_Wet, Forestry_Dry, 
Forestry_Wet, Natural_Dry_Flat, Natural_Dry_Hill, Natural_Wet_Flat, 
Natural_Wet_Hill, OrchardVineyard, SheepBeef_Dry_EasyHill, 
SheepBeef_Dry_Flat, SheepBeef_Dry_Rolling, SheepBeef_Dry_Steep, 
SheepBeef_Wet_EasyHill, SheepBeef_Wet_Flat, SheepBeef_Wet_Rolling, 
SheepBeef_Wet_Steep, Urban, Water 

As for Set 7 with Natural subdivided into Dry_Flat, Dry_Hill, Wet_Flat and Wet_Hill defined as DryS, MoistS 
+ WetS and FlatS, RollingS + EasyHillS + SteepS. 

9 (25) Bare, Cropland, Dairy_Dry, Dairy_Irrigated, Dairy_Moist, Dairy_Wet, 
Forestry_Dry_Flat, Forestry_Dry_Hill, Forestry_Wet_Flat, Forestry_Wet_Hill, 
Natural_Dry_Flat, Natural_Dry_Hill, Natural_Wet_Flat, Natural_Wet_Hill, 
OrchardVineyard, SheepBeef_Dry_EasyHill, SheepBeef_Dry_Flat, 
SheepBeef_Dry_Rolling, SheepBeef_Dry_Steep, SheepBeef_Wet_EasyHill, 
SheepBeef_Wet_Flat, SheepBeef_Wet_Rolling, SheepBeef_Wet_Steep, Urban, 
Water 

As for Set 8 with Forestry subdivided into Dry_Flat, Dry_Hill, Wet_Flat and Wet_Hill defined as DryS, MoistS 
+ WetS and FlatS, RollingS + EasyHillS + SteepS. 
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Table 16. Sets of potential land Types for the TP yield model. Category names that have a subscript ‘S’  (e.g., SteepS) indicate a category defined as 

per Srinivasan et al. (2021). Category names linked by a plus sign (e.g. EasyHillS + SteepS) indicate the aggregation of categories defined by Srinivasan 

et al. (2021). 

Set 
(no. 
Types) 

Types used by this study Details of how the Types are defined 

1 (4) Dry_Flat, Dry_Hill, Wet_Flat, Wet_Hill 
Dry and Wet defined as DryS and MoistS + WetS, respectively. 
Flat and Hill defined as FlatS and EasyHillS + RollingS + SteepS.  

2 (4) Dry_Steep, EasyHillRolling, Flat, Wet_Steep 
Dry and Wet defined as DryS + MoistS and WetS, respectively. 
 

3 (6) Dry_Flat, Dry_Hill, Moist_Flat, Moist_Hill, Wet_Flat, Wet_Hill 
Dry, Moist and Wet defined as DryS, MoistS and WetS, respectively. 
Flat and Hill defined as FlatS + RollingS and EasyHillS + SteepS, respectively.  

4 (9) 
Bare, Cropland, Dairy, Forestry, Natural, OrchardVineyard, SheepBeef, Urban, 
Water 

Land use/cover categories only. 

5 (18) 

Bare_Dry, Bare_Wet, Cropland_Dry, Cropland_Wet, Dairy_Dry, Dairy_Wet, 
Forestry_Dry, Forestry_Wet, Natural_Dry, Natural_Wet, OrchardVineyard_Dry, 
OrchardVineyard_Wet, SheepBeef_Dry, SheepBeef_Wet, Urban_Dry, 
Urban_Wet, Water_Dry, Water_Wet 

Land use/cover categories subdivided into Dry and Wet defined as DryS and MoistS + WetS. . 

6 (19) 

Bare, Cropland, Dairy_Dry_Flat, Dairy_Dry_Hill, Dairy_Moist_Flat, 
Dairy_Moist_Hill, Dairy_Wet_Flat, Dairy_Wet_Hill, Forestry, Natural, 
OrchardVineyard, SheepBeef_Dry_Flat, SheepBeef_Dry_Hill, 
SheepBeef_Moist_Flat, SheepBeef_Moist_Hill, SheepBeef_Wet_Flat, 
SheepBeef_Wet_Hill, Urban, Water 

As for 5 but include Moist defined by MoistS for Dairy and Sheep & Beef. 
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Appendix C Fitted coefficients for empirical models 

Table 17. Best TN concentration model (Model 6) fitted coefficients (mg m-3). Coefficients for 

each quantile, their standard errors (St Error) and p-values. 

Type Quantile Coefficient St Error P value 

Cropland 0.5 4464 1578 0.005 

OrchardVineyard 0.5 1102 3058 0.719 

Dairy_Dry 0.5 6130 963 0.000 

Forestry_Wet 0.5 237 48 0.000 

Natural_Dry 0.5 110 260 0.674 

Urban 0.5 1368 287 0.000 

SheepBeef_Dry_Hill 0.5 183 98 0.064 

Forestry_Dry 0.5 1272 496 0.011 

SheepBeef_Wet_Hill 0.5 477 57 0.000 

Natural_Wet 0.5 46 11 0.000 

Dairy_Irrigated 0.5 6311 2025 0.002 

Dairy_Moist 0.5 2513 272 0.000 

Dairy_Wet 0.5 1170 195 0.000 

SheepBeef_Wet_Flat 0.5 1193 280 0.000 

SheepBeef_Dry_Flat 0.5 314 357 0.379 

Cropland 0.05 759 1086 0.485 

OrchardVineyard 0.05 318 1063 0.765 

Dairy_Dry 0.05 1856 549 0.001 

Forestry_Wet 0.05 154 79 0.051 

Natural_Dry 0.05 -71 163 0.663 

Urban 0.05 584 128 0.000 

SheepBeef_Dry_Hill 0.05 86 32 0.007 

Forestry_Dry 0.05 402 334 0.229 

SheepBeef_Wet_Hill 0.05 143 77 0.064 

Natural_Wet 0.05 -4 24 0.875 

Dairy_Irrigated 0.05 1422 677 0.036 

Dairy_Moist 0.05 1580 276 0.000 

Dairy_Wet 0.05 503 146 0.001 

SheepBeef_Wet_Flat 0.05 526 199 0.008 

SheepBeef_Dry_Flat 0.05 31 135 0.819 

Cropland 0.95 22771 7364 0.002 

OrchardVineyard 0.95 11728 6983 0.093 

Dairy_Dry 0.95 5636 3324 0.090 

Forestry_Wet 0.95 771 530 0.146 

Natural_Dry 0.95 334 389 0.391 

Urban 0.95 1388 536 0.010 

SheepBeef_Dry_Hill 0.95 232 323 0.473 

Forestry_Dry 0.95 3290 2108 0.119 

SheepBeef_Wet_Hill 0.95 1126 326 0.001 

Natural_Wet 0.95 111 19 0.000 

Dairy_Irrigated 0.95 13496 3327 0.000 

Dairy_Moist 0.95 4124 879 0.000 

Dairy_Wet 0.95 1338 702 0.057 

SheepBeef_Wet_Flat 0.95 4226 1503 0.005 

SheepBeef_Dry_Flat 0.95 4352 1767 0.014 
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Table 18. Best TN yield model fitted coefficients (kg ha-1 yr-1).  Coefficients for each quantile, 

their standard errors (St Error) and p-values. 

Type Quantile Coefficient Std..Error P value 

SheepBeef_Hill 0.5 3.9 1.2 0.002 

Cropland 0.5 4.9 24.7 0.843 

OrchardVineyard 0.5 18.6 38.6 0.631 

Dairy_Dry 0.5 28.5 11.3 0.012 

Dairy_Irrigated 0.5 29.6 15.1 0.050 

Dairy_Moist 0.5 17.0 4.1 0.000 

Forestry 0.5 8.5 2.1 0.000 

Natural 0.5 2.4 0.6 0.000 

Dairy_Wet 0.5 37.5 3.4 0.000 

Urban 0.5 10.7 4.7 0.024 

SheepBeef_Flat 0.5 8.3 3.7 0.026 

SheepBeef_Hill 0.05 0.2 0.3 0.441 

Cropland 0.05 4.0 18.1 0.825 

OrchardVineyard 0.05 8.7 32.4 0.787 

Dairy_Dry 0.05 10.2 10.2 0.315 

Dairy_Irrigated 0.05 6.6 10.8 0.541 

Dairy_Moist 0.05 15.9 1.2 0.000 

Forestry 0.05 4.4 1.4 0.002 

Natural 0.05 1.4 0.3 0.000 

Dairy_Wet 0.05 31.3 3.3 0.000 

Urban 0.05 -7.9 12.4 0.524 

SheepBeef_Flat 0.05 0.4 1.0 0.692 

SheepBeef_Hill 0.95 12.0 2.0 0.000 

Cropland 0.95 84.9 50.1 0.091 

OrchardVineyard 0.95 -45.8 43.8 0.297 

Dairy_Dry 0.95 41.5 23.2 0.075 

Dairy_Irrigated 0.95 65.4 29.5 0.027 

Dairy_Moist 0.95 47.0 13.3 0.000 

Forestry 0.95 27.0 12.9 0.038 

Natural 0.95 6.6 1.3 0.000 

Dairy_Wet 0.95 64.1 13.8 0.000 

Urban 0.95 6.8 19.3 0.724 

SheepBeef_Flat 0.95 18.7 9.0 0.038 

 


